Звезды: их рождение, жизнь и смерть - Иосиф Шкловский
Шрифт:
Интервал:
Закладка:
Таким образом, в зависимости от первоначальной массы идеализированной модели звезды теория предсказывает три типа конечного состояния «мертвых» (т. е. исчерпавших свою энергию) звезд:
1. белые карлики,
2. нейтронные звезды,
3. черные дыры.
Первые известны астрономам вот уже свыше 70 лет. Нейтронные звезды после долгих безуспешных попыток были открыты только в 1967 г. Наконец, есть некоторые основания полагать, что несколько известных объектов отождествляются с «черными дырами» (см. § 24). Таким образом, мы видим, что хотя «идеализированная» модель звезды и является крайне упрощенной, существование всех трех разновидностей «мертвых» звезд она предсказала правильно. Первоначальная теория, однако, не указывала на конкретные пути образования «мертвых» звезд.
По всем данным вспышки сверхновых связаны с конечным этапом звездной эволюции. Это видно хотя бы из весьма своеобразного химического состава волокон Кассиопеи А. Из сказанного следует, что можно ожидать «генетическую» связь между вспышками сверхновых и образованием нейтронных звезд и черных дыр. Последнее обстоятельство «подозревалось» давно, но только около 15 лет назад были получены прямые наблюдательные данные: в остатках сверхновых обнаружены нейтронные звезды.
Естественнее всего считать, что огромное количество энергии, освобождаемое при вспышках сверхновых, имеет ядерное происхождение. Однако далеко не всякое ядерное горючее может быть, хотя бы в принципе, ответственно за взрыв звезды. Прежде всего это относится к водороду — основному ядерному горючему, поддерживающему путем соответствующих термоядерных реакций «спокойное» излучение звезд на главной последовательности. Дело в том, что хотя выделение энергии при полном превращении водорода в гелий и очень велико (6 1018 эрг/г), оно происходит достаточно медленно. Поэтому взрыва (т. е. очень быстрого освобождения большого количества энергии) в этом случае произойти не может.
Медленность термоядерных реакций на ядрах водорода объясняется тем, что цепь таких реакций (см. § 8) в качестве необходимых звеньев содержит процесс -распада. Последние же протекают весьма медленно и их нельзя никаким образом «ускорить»: ведь это же «спонтанные», т. е. самопроизвольные процессы. Например, даже при самой высокой температуре реакция превращения водорода в дейтерий:
происходит из-за -распада очень медленно. Однако при высоких температурах благодаря уже рассматривавшейся в § 8 реакции 34He 12С и последующих реакций ядер углерода с ядрами гелия (альфа-частицами) вида
может возникнуть очень большое количество легких ядер углерода, кислорода и неона. Ядра этих легких элементов могут уже при температуре около ста миллионов кельвинов вступить в реакции с протонами, сопровождаемые значительным, а главное, быстрым выделением энергии, так как такие реакции не сопровождаются -распадом. Однако этим способом каждое ядро легкого элемента может последовательно присоединить к себе не более трех-четырех протонов, что обеспечит выход энергии около 10—20 МэВ на одно ядро. Для более тяжелых ядер, получаемых путем последовательного присоединения протонов, наличие -распада сильно замедляет реакцию, отчего она потеряет свой «взрывной» характер. Все же даже 3—4 последовательных присоединения протонов дают неплохую «взрывчатку». Весь вопрос, однако, заключается в том, хватает ли у звезды нужного количества ядер легких элементов, чтобы при их взрыве (как это может случиться, мы пока не обсуждаем) выделилось нужное количество энергии.
Если химический состав звезды, которая должна взорваться, такой же, как у Солнца, то в каждом грамме ее вещества содержится примерно 5 1020 легких ядер. Если каким-то образом взрывная реакция на легких ядрах описанного выше вида произойдет, то удельный выход энергии будет 1016 эрг/г. Это мало! Ведь в случае сверхновых II типа удельный выход энергии по крайней мере в 10 раз больше. Если мы на минутку вообразим себе, что наше Солнце взорвалось бы вследствие такой реакции, то выделилась бы энергия 1049 эрг, а это все-таки в десять раз меньше, чем выделяется энергии при вспышках сверхновых I типа. Если предположить, что по какой-то неизвестной причине недра Солнца нагрелись бы до температуры в сто миллионов кельвинов, то скорее всего последовал бы взрыв. Однако скорость разлета газов не превышала бы, скажем, 500 км/с, а это по крайней мере в десять раз меньше, чем наблюдаемая скорость разлета при вспышке сверхновых (см. § 15).
Если мы хотим объяснить катастрофическое выделение энергии при вспышке сверхновой ядерными реакциями (а такие взрывные реакции могут происходить только с ядрами легких элементов), то необходимо предположить, что химический состав недр взорвавшейся звезды должен быть резко отличен от солнечного. Это различие должно выражаться в несравненно большем обилии легких элементов (азот, кислород, углерод, неон) по отношению к водороду, чем на Солнце. Например, если на Солнце на каждую тысячу атомов водорода приходится только один атом какого-нибудь из этих элементов, то у звезды, которая должна взорваться, количество легких атомов должно составлять уже 2—3% от количества атомов водорода. Но эта звезда когда-то образовалась из межзвездной среды, химический состав которой почти такой же, как у солнечной атмосферы. Это означает, что в процессе эволюции химический состав звезды, которая должна взорваться, подвергся благодаря разного рода ядерным реакциям весьма значительному изменению. Это изменение как бы «подготовило» звезду для взрыва, образовав там потенциальный «пороховой погреб», наполненный взрывоопасным ядерным горючим.
При очень высоких температурах, которые неизбежно должны возникнуть, когда пойдут реакции на легких ядрах (речь идет о температуре порядка миллиарда кельвинов), вещество начнет обладать взрывной неустойчивостью по причине очень быстро протекающих реакций типа
и аналогичных реакций для 16О, 20Ne и других легких элементов. Характерное время для таких реакций около 1 с, а удельный выход энергии достигает 5 1017 эрг/г. Если бы, например, взорвалась масса такого вещества, равная 0,1 массы Солнца, то выделилось бы 1050 эрг энергии, что уже близко к энерговыделению во время вспышек сверхновых I типа.
Таким образом, мы можем сделать вывод, что потенциально возможным ядерным горючим, ответственным за взрывы звезд, может быть только вещество, в высокой степени обогащенное легкими элементами. Обычная космическая «микстура» с химическим составом, подобным солнечному, не может ни при каких обстоятельствах привести к ядерному взрыву звезды. Пока, однако, совершенно открытым остается вопрос, каким же образом реализуется «подготовка» условий, необходимых для ядерного взрыва.
Наконец, остается возможность, что главным источником взрыва звезд является освобождение не ядерной энергии, а гравитационной при катастрофическом сжатии. Скорее всего, имеют значение оба вида энергии, хотя, как мы уже говорили выше, вся картина взрыва звезды еще далека от ясности. Тем не менее мы все же остановимся на некоторых теоретических разработках, которые, несомненно, будут полезны при создании в будущем (может быть, недалеком) теории взрыва звезд.
Английские теоретики Хойл и Фаулер рассмотрели интересную модель звезды накануне ее взрыва («предсверхновая»). Они ограничились вначале случаем сравнительно массивной звезды, M = 30 солнечных масс, причем за время эволюции перемешивания вещества не было. У таких звезд вещество в центральной части невырожденно, так как плотность там сравнительно невелика (см. § 12).
Можно полагать, что эти расчеты имеют отношение к проблеме вспышек сверхновых II типа. На заключительной фазе эволюции температура вещества в центральных областях такой звезды (вернее, модели звезды) очень велика, порядка нескольких миллиардов кельвинов. При такой температуре весь водород и гелий уже выгорели. Ядерные реакции идут очень быстро. Равновесное состояние вещества характеризуется преобладанием ядер элементов группы железа, имеющих минимальное значение «коэффициента упаковки». Ядро такой звезды окружено «мантией», температура которой значительно ниже, например, меньше миллиарда кельвинов. Химический состав этой оболочки резко отличен от химического состава ядра. В «мантии» преобладают легкие элементы — кислород, азот, неон, т.е. потенциальное ядерное горючее, необходимое для взрыва звезды. Наконец, «мантия» окружена самой наружной, водородно-гелиевой оболочкой. По расчетам этой модели масса центрального железного ядра составляет 3 солнечные массы, масса кислородной мантии 15, а все остальное приходится на долю довольно разреженной наружной водородно-гелиевой оболочки.