- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Современная космология: философские горизонты - Коллектив авторов
Шрифт:
Интервал:
Закладка:
Вообще в топологии простое противопоставление конечного (замкнутого) и бесконечного (открытого) становится еще менее обоснованным, чем в метрической геометрии, их взаимоотношения становятся еще более сложными.
Следовательно, существуют по крайней мере две очень серьезные причины, в силу которых нельзя утверждать, что уточнение данных о кривизне метагалактического пространства позволит решить вопрос о том, конечна или бесконечна Вселенная. Во-первых, как уже говорилось выше (2.3.2), это было бы верно только в том случае, если бы мы могли быть уверены в том, что в природе реализуется наиболее удобная возможность — простейший случай пространства постоянной кривизны. Во-вторых, как мы видим сейчас, даже в этом случае все могла бы испортить каверзная топология.
2.4.2. Трудности, которые стоят на пути познания топологических свойств пространственно-временного континуума, можно (довольно условно, разумеется) разделить на две группы: математические и физические трудности. Начнем с первой группы.
Космология заинтересована в классификации возможных пространств (в математическом смысле) по их топологическим типам. Эта задача решена исчерпывающим образом только для двумерных пространств (поверхностей), во всяком случае, для замкнутых поверхностей. Задача изыскания всех топологических типов многообразий трех и большего числа измерений, по словам такого знатока топологии, как акад. П.С. Александров, «до настоящего времени остается безнадежно трудной».
Что касается наиболее важного для космологии вопроса о топологических свойствах пространства-времени (псевдориманова многообразия), то здесь, естественно, положение еще сложнее и, вероятно, таит в себе немало сюрпризов. Намек на то, что эти сюрпризы могут быть весьма разительного свойства, содержится в проблеме пространственных форм Клиффорда — Клейна, или локально евклидовых пространств[360]. Если рассматривать их в качестве подпространств римановых (псевдоримановых) пространств, то возникает возможность замкнутых во времени «миров», грубо говоря, возможность «путешествия в свое собственное прошлое», обращения направления времени вспять в результате перемещения в пространстве[361]. В какой мере и в каком смысле физически реализуема такая математическая возможность, это пока далеко не ясно, но ее существование, во всяком случае, является лишним предостережением против чрезмерно оптимистической оценки наших современных знаний о бесконечности.
Насколько я могу судить, те частные, но очень интересные результаты, которые получены в области топологии космологических моделей, получались двумя путями (или их сочетанием). Первый путь — это нахождение систем отсчета, наиболее подходящих к характеру задачи (подходящих с точки зрения тех или иных физических или математических критериев), и исследование свойств пространства или пространства-времени найденных систем отсчета. В качестве примера использования физических критериев можно указать на вакуольную модель Эйнштейна и Страуса[362] или известную абсолютно вращающуюся модель Геделя[363], которую считают важнейшим достижением теоретической космологии после Эйнштейна и Фридмана[364]. Пример использования математических критериев — ряд работ последних лет о внутреннем решении Шварцшильда (см., например5); к этим работам придется вновь обратиться в 2.4.4. Второй путь — это выяснение топологии данного многообразия путем его погружения в евклидово многообразие большего числа измерений. Так, например, пространство-время простейших (однородных изотропных) моделей может быть вложено в пятимерное евклидово многообразие; в силу равноправия пространственных координат можно ограничиться одной из них и тогда получаются чрезвычайно наглядные «диаграммы Робертсона[365]». В некоторых более сложных случаях четырехмерное пространство-время «не помещается» в пятимерное евклидово многообразие, и приходится прибегать к шестимерному[366]. Но и тогда можно получить довольно наглядные диаграммы в виде трех- и двухмерных проекций интересующего нас сечения многообразия.
Сочетая указанные пути, по-видимому, можно продвинуться довольно далеко в выяснении топологических типов физического пространства-времени.
2.4.3. Кривизна метагалактического пространства, если она вообще существует, т. е. отлична от нуля, столь мала, что не может быть и речи об определении ее с помощью, например, астрономической триангуляции. Она вычисляется весьма косвенным путем, исходя из предсказываемой теорией связи метрики пространства с теми или иными наблюдательными данными внегалактической астрономии, причем получение последних находится на самом пределе возможности даже крупнейших современных инструментов. Но принципиальная сторона вопроса ясна: возможность наблюдательной проверки метрических свойств пространства следует из релятивистской теории тяготения, связывающей метрическую геометрию с физикой.
Вопрос о наблюдательной проверке топологических свойств пространства, а тем более, пространства-времени, намного сложнее, ибо не существует физической теории, которая связывала бы эти свойства с каким-либо конкретным физическим «агентом» — полем, типом взаимодействия и т. п. Поэтому здесь связь с опытом носит еще более опосредованный характер, чем в случае метрических свойств. Можно, например, искать наблюдательного подтверждения тех решений уравнений тяготения, которые связаны с «необычной» топологией; если такое подтверждение обнаруживается, то это может рассматриваться как косвенное свидетельство в пользу существования у реального пространства именно таких топологических свойств.
На одном из примеров такого рода стоит остановиться подробнее из-за его принципиального значения для проблемы бесконечности и ее связи с гравитацией.
В течение ряда лет делались попытки устранить сингулярности из космологических решений уравнений Эйнштейна или, по крайней мере, выяснить, насколько тесно они связаны с самими уравнениями. Сейчас эту трудную задачу можно, видимо, считать решенной.
Общий случай произвольного распределения материи не приводит к появлению физической особенности и связанной с нею ограниченности времени, о которой шла речь в 2.3.2. Этот вывод относится и к важному, с точки зрения астрономических приложений, случаю пространственной сферической симметрии2. Однако история науки любит парадоксы, и почти одновременно с устранением недостатка теории стало выясняться, что это, возможно, вовсе и не недостаток, а плодотворная черта теории: реальные гравитационные процессы действительно могут иметь исходным или завершающим пунктом состояние материи со сверх-ядерной плотностью, взрывной деформацией пространства и вырожденной метрикой. Открытие «сверхзвезд»3 повлекло за собой очень интенсивное изучение таких процессов — гравитационного коллапса и антиколлапса. Можно даже говорить о зарождении на стыке астрофизики, космологии и космогонии новой научной дисциплины — релятивистской астрофизики.
Длительное время считалось, что существование сингулярной сферы Шварцшильда устанавливает предел геометрических размеров тела заданной массы, так что при гравитационном сжатии плотность вещества не может превзойти определенное конечное значение (см., напр.[367]). Вместе с тем подчеркивалось[368], что при очень высоких плотностях вещества уравнения Эйнштейна теряют силу. Начиная с известной работы Оппенгеймера и Волкова, постепенно росла уверенность, что при определенных условиях возможно катастрофическое сжатие гравитирующих масс «в точку» и взрывное расширение из «точки», что при этом выход энергии может на два порядка превышать выход при термоядерных реакциях, и, наконец, что «сверхзвезды», возможно, являются образцом таких процессов. Похоже, что границы Метагалактики также находятся внутри сферы Шварцшильда и космологическое расширение может интерпретироваться как антиколлапс Метагалактики[369].
Эта новейшая гравитационная экзотика существенна для нашей темы. Она показывает необходимость учета возможной неевклидовости топологии в космологии и даже в явлениях обычного астрофизического масштаба.
Она показывает также, что не только метрика, но и, вероятно, топология хотя бы частично может быть поставлена в зависимость от гравитации. Это открывает возможность физического, наблюдательного подхода к топологической структуре пространства-времени.
Процессы коллапса-антиколлапса существенно асимметричны по отношению к отражению времени (времени-подобной координаты). В этом можно было бы искать объ-яснение направленности времени, сказав, что «стрела времени» в нашей Метагалактике определяется ее расширением. В сжимающихся (коллапсирующих) метагалактиках направление течения времени является обратным, таким образом, можно было бы утверждать, что гравитация определяет не только метрику (шкалу, ритм) времени, но и такое глубоко топологическое его свойство, как ориентируемость.

