- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - Леонард Сасскинд
Шрифт:
Интервал:
Закладка:
Джо Полчински выглядит очень молодо и ведёт себя как «свой в доску парень». Говоря о еде, Джо однажды заметил: «Существует только два вида блюд: те, которые едят с шоколадным соусом, и те, которые едят с кетчупом». Но мальчишеская внешность скрывает один из самых глубоких и мощных умов, атаковавших физические проблемы за последние полвека. Ещё до того, как Виттен представил свою М-теорию, Джо экспериментировал с новой идеей в теории струн. Скорее в порядке математической игры, нежели серьёзного исследования он предположил, что в пространстве могут существовать особые места, в которых струны обрываются. Представьте, как ребёнок дёргает скакалку в разные стороны, создавая бегущие волны. Волны распространяются к дальнему концу скакалки, но то, что происходит с ними дальше, зависит от того, закреплён второй конец скакалки или свободен. До Полчински считалось, что открытые струны всегда имеют свободные концы, «болтающиеся» в пространстве. Новая идея Джо состояла в том, что в пространстве могут существовать особые «якоря», удерживающие свободные концы струн от колебаний. Якорем может быть просто точка в пространстве: это более или менее напоминает ситуацию, когда второй конец скакалки удерживается от колебаний сильной рукой старшего товарища. Но существуют и другие варианты. Предположим, что конец скакалки прикреплён к кольцу, которое может скользить вверх и вниз вдоль вертикальной штанги. Конец как бы частично зафиксирован, но в какой-то мере может свободно двигаться. Хотя прикреплённый к штанге конец может свободно скользить по ней, это движение возможно только вдоль штанги. «Почему бы не применить аналогию скакалки и штанги к теории струн? – рассуждал Полчински. – Почему бы не существовать особым линиям в пространстве, к которым прикреплены свободные концы струн? Подобно скакалке, скользящей вдоль штанги, конец струны мог бы свободно скользить вдоль линии, причём сами линии могут быть и кривыми. Но точкой и линией не исчерпываются все возможности. Конец струны может быть присоединён к поверхности – своего рода мембране. Свободно скользя в любом направлении вдоль поверхности мембраны, конец струны в то же время не может её покинуть».
Эти точки, линии и поверхности, на которых может заканчиваться струна, нужно было как-то назвать. Джо придумал для них название «браны Дирихле», или просто D-браны. Дирихле был французским математиком XIX века, не имевшим ничего общего с теорией струн. Но 150 лет назад он изучал математику волн, в частности законы отражения волн от стационарных объектов. По справедливости, новые объекты должны были бы называться бранами Полчински, но термин «P-браны» уже был занят струнными теоретиками для объектов другого вида.
Джо – мой хороший друг. В течение 25 лет мы тесно сотрудничали в ряде физических проектов. Впервые я услышал о D-бранах за чашкой кофе в Межгалактическом кафе Квакенбуша в Остине, в Техасе. Кажется, это было в 1994 году. Идея показалась мне забавной, но не революционной. Я был не одинок в недооценке значения D-бран. В те времена они не входили в список первоочередных дел теоретиков, и думаю – даже в список первоочередных дел самого Джо. Ситуация кардинально изменилась в 1995 году, когда после лекции Виттена D-браны буквально взорвали мозги теоретиков.
Вы спросите: «Как D-браны связаны с лекцией Виттена?» Спустя несколько месяцев после неё, в ноябре, Джо написал статью, которая имела огромные последствия во всех областях теоретической физики. Новые объекты, необходимые Виттену, оказались именно D-бранами Джо. Вооружённые D-бранами физики получили, наконец, возможность завершить виттеновский проект по замене нескольких, на первый взгляд различных, теорий на одну, но с множеством решений.
Браны любых размерностей
Что такого особенного в струнах? Что такого в одномерной энергетической нити, что вселяет в теоретиков уверенность в том, что эти нити являются строительными блоками всей материи? Чем больше мы узнаём о теории струн, тем более некоторые из нас убеждаются в том, что в струнах нет ничего особенного. В восьмой главе мы столкнулись с Магической Мистической Математической одиннадцати-Мерной М-теорией. Эта теория вообще не содержит струн. В ней есть мембраны, 5-браны и гравитоны, но не струны. Как мы видели, струны появляются только при компактификации М-теории, и даже тогда они являются не более чем предельными случаями мембран, которые становятся похожими на струны, когда размер компактифицируемого измерения становится достаточно малым. Иными словами, Теория Струн – лишь теория струн в некоторых ограниченных регионах Ландшафта.
В мире с пространственными измерениями существуют три типа объектов, которые струнные теоретики называют бранами. Самый простой из них – точечная частица. Поскольку точка не имеет размера ни в каком направлении, принято считать точку 0-мерным пространством. Жизнь на точке очень скучна: ведь у вас нет ни одного направления для исследования. Струнные теоретики относятся к точечной частице как к 0-бране, где 0 обозначает размерность объекта. На их жаргоне 0-браны, к которым прикреплены концы струн, называются D0-бранами.
За 0-бранами идут 1-браны, или струны. Струна имеет протяжённость только в одном направлении. Живущие на струнах по-прежнему очень ограниченны в своих возможностях, но в их распоряжении имеется по крайней мере одно измерение, пригодное для заселения. В теории струн существуют два вида 1-бран: оригинальные струны и D1-струны – и те и другие являются одномерными объектами, на которых могут заканчиваться обычные струны.
И наконец, в трёхмерном пространстве могут существовать 2-браны, или мембраны, напоминающие резиновые листы. Жизнь на 2-бране бесконечно разнообразна, но всё таки не так интересна, как в трёхмерном пространстве. На самом деле мы могли бы назвать наш мир трёхмерной 3-браной, но в отличие от 0, 1 и 2-бран мы не можем перемещать 3-брану в пространстве, поскольку она и есть пространство. Но предположим, что мы бы жили в мире с четырьмя пространственными измерениями. Дополнительное пространственное направление предоставило бы 3-бране свободу перемещения. В мире с четырьмя пространственными измерениями могут существовать 0, 1, 2 и 3-браны.
А как насчёт 9 + 1-мерного мира теории струн? Вполне возможно, что в нём могут существовать браны всех размерностей: от 0-бран до 8-бран. Но возможность сама по себе ещё не означает, что этот мир действительно содержит такие объекты. Это зависит от основных «кирпичиков» материи и от того, как они «соединены» между собой. С другой стороны, это означает, что у нас есть достаточно измерений, чтобы обеспечить возможность существования таких бран. А десяти пространственных измерений М-теории достаточно, чтобы включить ещё один вид бран – 9-браны.
Но опять-таки, из одного лишь факта, что в десяти пространственных измерениях можно сконструировать десять различных видов бран, ещё не следует, что М-теория на самом деле содержит все эти типы бран в качестве возможных объектов. В действительности М-теория – это теория гравитонов, мембран и 5-бран. Других видов бран в ней нет. Объяснение, почему это так, увело бы нас слишком далеко в дебри высшей математики и суперсимметричной общей теории относительности, но нам туда и не нужно: достаточно просто знать, что 11-мерная супергравитация (в смысле: 10 + 1-мерная) – это теория мембран и 5-бран, взаимодействующих путём обмена гравитонами.
Каждая десятимерная теория струн имеет собственный набор D-бран. Одна из версий, так называемая теория струн типа IIa, имеет чётно-мерные браны: D0, D2, D4, D6 и D8-браны. Теория типа IIb содержит нечётно-мерные браны: D1, D3, D5, D7 и D9-браны.
Подобно тому как к одной штанге можно прикрепить несколько скакалок, на D-бране может оканчиваться любое количество струн. Более того, одна струна может прикрепляться к D-бране обоими концами, подобно тому как скакалка может быть прикреплена обоими концами к одной и той же штанге. Эти концы струны будут свободно двигаться вдоль браны, но не смогут оторваться от неё. Они являются как бы осуждёнными на пожизненное заключение на D-бране.
Подобные струны интересны тем, что они ведут себя так же, как элементарные частицы. Возьмём, к примеру, D3-браны. Короткие струны, прикреплённые обоими концами к бране, имеют возможность свободно перемещаться по всему трёхмерному объёму D3-браны. Они могут соединяться вместе, образуя более крупную струну, вибрировать и снова рассоединяться. Они перемещаются и взаимодействуют как частицы, для объяснения поведения которых были состряпаны предыдущие теории струн. Только теперь эти частицы живут на бране.
D-брана представляет собой модель мира с элементарными частицами, поведение которых похоже на поведение настоящих элементарных частиц. Единственное, что отсутствует на D-бране, – это гравитация. Так происходит из-за того, что гравитон – это замкнутая струна, не имеющая концов, а струна, не имеющая концов, не может заканчиваться на бране и, соответственно, не может на ней жить.

