Категории
Самые читаемые
Лучшие книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (УГ) - БСЭ БСЭ

Большая Советская Энциклопедия (УГ) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (УГ) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 6 7 8 9 10 11 ... 27
Перейти на страницу:

  Окислительное превращения углеводов (пентозный путь, или пентозофосфатный цикл) также начинаются с глюкозомоно-фосфата. Затем происходят последовательно 2 дегидрогеназные реакции: первая приводит к фосфоглюконовой кислоте, а вторая — к освобождению CO2 и образованию фосфопентозы. Важным итогом этих окислительных реакций является образование восстановленного никотинамидадениндинуклеотидфосфата — кофермента, участвующего во многих синтезах (например, в синтезе жирных кислот). Последующие реакции пентозного пути не связаны с использованием молекулярного кислорода и протекают в анаэробных условиях. При этом частично образуются вещества, характерные для 1-й стадии гликолиза (фруктозо-6-фосфат, фруктозодифосфат, фосфотриозы), а частично специфические для пентозного пути (седогептулозо-1-фосфат, седогептулозо-1,7-дифосфат, фосфопентозы, фосфотетроза, а, возможно, также фосфорные эфиры моносахаридов с 8 атомами углерода). Перечисленные вещества, характерные для гликолиза и пентозного пути, могут участвовать в обратимых реакциях взаимопревращения. Аналогичные реакции протекают и при фотосинтезе на стадиях образования фосфопентоз из фруктозо-6-фосфата и фосфотриозы (так называемый цикл Кальвина).

  Пути биосинтеза углеводов представлены в живых клетках процессами глюконеогенеза и образованием высокомолекулярных полисахаридов. Процесс глюконеогенеза начинается с карбоксилирования пирувата при участии сложной по своей структуре ферментной системы пируваткарбоксилазы, приводящей к образованию щавелевоуксусной кислоты (ЩУК) с участием в качестве кофермента биотина . Стимулирует эту реакцию ацетил-КоЛ. В свою очередь, ЩУК подвергается в цитоплазме реакции декарбоксилирования под действием фермента фосфоенолпируваткарбоксикиназы. Благодаря этим реакциям преодолеваются энергетические барьеры и может образоваться из пирувата фосфоенолпировиноградная кислота — источник глюкозы. В фотосинтезирующих бактериях реализуется также и др. возможность: обращение цикла трикарбоновых кислот, восстановление при этом 3 молекул CO2 и образование фосфоенолпирувата. У растений и микроорганизмов в процессе глюконеогенеза важную роль играет глиоксилатный цикл .

  Суммарное уравнение реакций, ведущих от пирувата к глюкозе, может быть записано следующим образом:

  2CH3 COCOOH + 4АТФ + 2ГТФ + 2НАДН + 2H + 6H2 O ® глюкоза + 2НАД + 4АДФ + 2ГДФ + 6 неорганический фосфат

  (где АТФ — аденозинтрифосфат, а ГТФ — гуанозинтрифосфат). Синтез олиго- и полисахаридов при участии различных гликозилтрансфераз осуществляется путём переноса гликозильного остатка с нуклеозиддифосфатсахара на моносахарид или же на концевой остаток моносахарида в молекуле поли- или олигосахарида. Таким образом, цепь, состоящая из гексозных остатков, удлиняется. Ветвление амилопектина или гликогена за счёт образования 1,6-связей осуществляется ферментом амило- (1,4—1,6) — трансгликозилазой, катализирующим перенос концевого фрагмента, состоящего из 6 или 7 гликозильных остатков, с конца главной цепи на гидроксильную группу 6-го углеродного атома остатка глюкозы какой-либо из цепей полисахарида.

  Пути регуляции У. о. крайне разнообразны. На любых уровнях организации живого У. о. регулируется факторами, влияющими на активность ферментов, участвующих в реакциях У. о.: концентрацией субстратов и продуктов отдельных реакций, кислородным режимом, температурой, проницаемостью биологических мембран , определяющей возможность контакта между участниками реакций, концентрацией коферментов, необходимых для отдельных реакций, и т.д. У животных на всех стадиях синтеза и распада углеводов регуляция У. о. осуществляется с участием нервной системы и гормонов.

  Лит.: Кретович В. Л., Основы биохимии растений, 5 изд., М., 1971; Шлегель Г., Общая микробиология, [пер. с нем.], М., 1972; Ленинджер А., Биохимия, пер. с англ., М., 1974. См. также ст. Обмен веществ и литературу при ней.

  С. Е. Северин.

Углеводороды

Углеводоро'ды, класс органических соединений, молекулы которых состоят только из атомов углерода и водорода. В зависимости от строения различают ациклические, или алифатические, У., в молекулах которых атомы углерода связаны друг с другом в линейные или разветвленные цепи, и изоциклические, или карбоциклические, У., молекулы которых представляют собой кольца (циклы) из 3 и более атомов углерода. Эту группу У. делят на алициклические У. и ароматические углеводороды (см. также Ароматические соединения ). Ациклические У. подразделяют на насыщенные углеводороды , содержащие только простые связи (родоначальник ряда — метан), и ненасыщенные углеводороды , в молекулах которых могут содержаться кратные связи — двойные и тройные, например одна двойная связь (см. Олефины ), две двойные связи (см. Диеновые углеводороды ), одна тройная связь (как, например, в ацетилене ). Алициклические У. также могут быть насыщенными (см. Циклоалканы ) и ненасыщенными. У. образуют гомологические ряды , характеризующиеся закономерным изменением физических и химических свойств (см. также Органическая химия ).

Углеводы

Углево'ды, обширная группа органических соединений, входящих в состав всех живых организмов. Первые известные представители этого класса веществ по составу отвечали общей формуле Cm H2n On , то есть углерод + вода (отсюда название); позднее к У. стали относить также их многочисленные производные с иным составом, образующиеся при окислении, восстановлении или введении заместителей.

  Превращения У. известны с древнейших времён, так как они лежат в основе процессов брожения, обработки древесины, изготовления бумаги и тканей из растительного волокна. Тростниковый сахар (сахарозу) можно считать первым органическим веществом, выделенным в химически чистом виде. Химия У. возникла и развивалась вместе с органической химией ; создатель структурной теории органических соединений А. М. Бутлеров — автор первого синтеза сахароподобного вещества из формальдегида (1861). Структуры простейших сахаров выяснены в конце 19 в. в результате фундаментальных исследований немецких учёных Г. Килиани и Э. Фишера , основанных на стереохимических представлениях Я. Г. Вант-Гоффа и блестяще их подтвердивших. В 20-е гг. 20 в. работами английского учёного У. Н. Хоуорса были заложены основы структурной химии полисахаридов. Со 2-й половины 20 в. происходит стремительное развитие химии и биохимии У., обусловленное их важным биологическим значением и базирующееся на современной теории органической химии и новейшей технике эксперимента.

  Классификация и распространение углеводов. У. принято делить на три основных группы: моносахариды, олигосахариды и полисахариды. Обычные моносахариды представляют собой полиокси-альдегиды (альдозы) или полпоксикетоны (кетозы) с линейной цепью атомов углерода (m = 3—9), каждый из которых (кроме карбонильного углерода) связан с гидроксильной группой. Простейший из моносахаридов — глицериновый альдегид — содержит один асимметрический атом углерода и известен в виде двух оптических антиподов (D и L). Прочие моносахариды имеют несколько асимметрических атомов углерода; их рассматривают как производные D- или L-глицсринового альдегида и относят в соответствии с абсолютной конфигурацией при (т— 1)-м атоме углерода к D- или L-pяду. Различия между моносахаридами в каждом ряду обусловлены относительной конфигурацией остальных асимметрических центров (см. Изомерия ). Характерное свойство моносахаридов в растворах — способность к мутаротации, то есть установлению таутомерного равновесия (см. Таутомерия ) между ациклической альдегидо- или кетоформой, двумя пятичленными (фуранозными) и двумя шестичленными (пиранозными) циклическими полуацетальными формами (см. схему). Образующиеся пиранозы (как и фуранозы) различаются конфигурацией (a или b) возникающего при циклизации асимметрического центра у карбонильного атома углерода (на схеме помечен звёздочкой).

 

  Соотношение между таутомерными формами в равновесии определяется их термодинамической устойчивостью (для обычных сахаров преобладают пиранозные формы). Полуацетальный гидроксил резко отличается от прочих гидроксильных групп моносахарида по способности к реакциям нуклеофильного замещения. Такие реакции с разнообразными спиртами приводят к образованию гликозидов (остаток спирта в гликозиде называют агликоном). В тех случаях, когда агликоном служит молекула моносахарида, образуются олиго- и полисахариды. При этом каждый остаток моносахарида может иметь пиранозную или фуранозную структуру, a- или b-конфигурацию гликозидной связи и быть связанным с любой из гидроксильных групп соседнего моносахарида. Поэтому число различающихся строением полимерных молекул, которые можно построить даже только из одного моносахарида, огромно.

1 ... 3 4 5 6 7 8 9 10 11 ... 27
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая Советская Энциклопедия (УГ) - БСЭ БСЭ торрент бесплатно.
Комментарии