Океан и атмосфера - Слава Кан
Шрифт:
Интервал:
Закладка:
Таблица 2
Состав воды На 1000 г воды % Состав воды На 1000 г воды % NaCl 27,2 77,8 K2SO4 0,9 2,5 MgCl2 3,8 10,9 CaCO3 0,1 0,3 MgSO4 1,7 4,7 MgBr2 0,1 0,2 CaSO4 1,2 3,6Эта таблица, составленная английским химиком Дитмаром в 1878–1882 гг., не утратила в целом своего значения и сейчас.
Установлено, что соли, растворенные в морской воде, распадаются (диссоциируют) на ионы: катионы, заряженные положительно (атомы водорода и металлов), и анионы, заряженные отрицательно (кислотные и водные остатки). Поэтому в настоящее время солевой состав морской воды иногда представляют не в виде солей, а в виде ионов. Возвращаясь к последней таблице, обратим внимание на то, что относительное содержание солей остается одинаковым (в %) как при повышении, так и при понижении солености. Это — очень важное для практики свойство: зная содержание лишь одной составляющей, например хлористых соединений, можно легко рассчитать остальные. Любопытно, что состав человеческой крови имеет точно такое же процентное соотношение входящих в нее элементов, как и морская вода.
Уже первые исследования показали, что из числа известных химических элементов 32 встречается в воде океанов и морей. Несмотря на незначительное содержание микроэлементов в 1 т воды сумма (учитывая гигантский общий объем океанических вод) получается весьма внушительной. Так, содержание золота в 1 т воды меньше 0,005 мг, а в Мировом океане в целом его несколько миллиардов тонн! Специально нужно выделить соединения азота, фосфора и кремния — они играют решающую роль в жизнедеятельности морских организмов. Невелико по количеству содержание в морской воде растворимых в ней газов. Некоторые вещества в морской воде находят лишь косвенным путем: йод — в водорослях, медь и серебро — в коралловых известняках, и т. д.
Воды океанов постоянно пополняются пресной водой, стекающей в него с суши береговыми потоками и реками, — примерно 30–40 тыс. км3 в год. Эти воды тоже содержат некоторое количество веществ в растворе. Но соотношение солей в океанах и реках различно. Так, хлоридов в речной воде 5,2 %, сульфатов 9,9, карбонатов 60,1 и прочих веществ 24,8 %. Казалось бы, при таком преобладании карбонатов в речной воде, оно должно было увеличиваться и в морской. Но этого не происходит, так как они легко выпадают в осадок, активно поглощаются морскими организмами для построения раковин, панцирей, скелетов, коралловых рифов и целых островов. Считают, что для того, чтобы увеличить количество хлоридных ионов в океане всего на 0,02‰ понадобилось бы 200 тыс. лет.
Сравнивая состав морской и речной воды, легко увидеть, что хлористые соединения, преобладающие в морской воде, в очень малом количестве представлены в речной. В то же время в речной воде больше половины карбонатов. Значит, соли океана внесены в него не реками, они другого происхождения, окончательно еще не установленного. По этому вопросу существует несколько предположений. Сохраняя общее процентное соотношение солей, соленость вод океанов изменяется в значительных пределах как в океане в целом, так и в каждом его районе и даже точке. Эти изменения зависят от испарения с поверхности, осадков, вертикального перемешивания и горизонтальных переносов воды, таяния льдов и выноса пресных речных вод. Когда происходит испарение, то в пар превращается только пресная вода, а оставшаяся в океане становится еще более соленой. Унесенные ветром водяные пары потом вновь попадают на поверхность океана (и суши), теперь уже распресняя его. Одновременно с испарением наблюдается и другой физический процесс — ветер уносит не только «пресный» пар, но и морские брызги на материк. При этом убыль солей равна примерно 300–400 млн. т (при объеме осадков на материках 100 тыс. км3).
Морской лед также в основном пресный — рассол постепенно стекает из него вниз, осолоняя поверхностный слой воды. Весной происходит обратный процесс, если лед тает на месте и не выносится. Небольшие реки распресняют воду лишь у устья, крупные — далеко в море.
Системы крупных океанических течений — таких, как Гольфстрим и Куросио, — нарушают распределение солености, принося в высокие широты соленые воды пассатных областей.
Изменение солености происходит в вертикальном направлении — ветер постоянно перемешивает поверхностные воды (примерно до 100 м), конвекция, являющаяся результатом осолонения или охлаждения поверхностных под, ведет к изменениям солености до глубин в 1 тыс. м.
Если же взглянуть на изменения солености с исторических позиций, то выясняется, что большое значение имели ледниковые периоды — во время оледенений соленость Мирового океана постепенно возрастала, максимум наступал в конце этих периодов. В послеледниковые периоды из-за таяния льдов соленость уменьшалась. Очень медленные изменения солености океанических вод связаны с поступлением и потерей солей, приходящих в океан из рек, недр Земли, атмосферы. Это все пополнение. Убыль же солей происходит от выпадения в осадок на дно (например, в районах Кара-Богаз-Гол или Сиваш), испарения, выноса на сушу ветром, пропитывания грунтов и др. Следует заметить, что в океан из атмосферы солей поступает всего в 2,5–3 раза меньше, чем приносят воды суши.
Соленость океана различна на глубине и на поверхности и может сильно отклоняться от средней величины, особенно в морях (в Красном — от 8 до 42‰). В открытых же частях океана пределы колебания невелики — от 32 до 37‰. Можно заметить общие черты в распределении солености на поверхности Мирового океана, связанные с географической широтой, т. е. с общим распределением испарения и осадков. Минимум солености приходится на высокие широты (малое испарение, обильные осадки, таяние приносных льдов). Чем ближе к пассатным зонам, тем соленость выше, и у тропиков (25° с. ш. и 20° ю. ш.) она максимальна (большое испарение из-за постоянных ветров, ясная погода). В направлении к экватору соленость несколько уменьшается.
Из океанов самый соленый Атлантический, его соленость достигает 37,5‰ — абсолютный максимум на поверхности открытого океана. Немного ниже соленость Тихого океана, предельно она равна 36,5‰. Это общее зональное распределение солености нарушают мощные океанические течения.
Распределение солености в глубинах океана отличается от поверхностного по ряду причин, одна из которых состоит в том, что распределение солености на глубине определяется ее плотностью. Например, распресненные, менее плотные поверхностные воды в высоких широтах создают устойчивость, а это значит, что на глубинах может и не быть малой соленость. Различная соленость на поверхности и на глубине связана также с глубинными течениями. Известно, что на горизонте 75—150 м в экваториальной зоне Тихого и Атлантического океанов поверхностные воды подстилаются слоем очень соленой воды (более 36‰), принесенной с запада глубинными экваториальными противотечениями Кромвелла и Ломоносова, открытыми сравнительно недавно. Следовательно, по современным представлениям, соленость на глубинах открытого океана изменяется по-разному. Однако удалось установить некоторые общие черты. Так, заметные колебания обнаруживаются лишь в верхнем слое — до глубин 1500 м. А ниже, в слое «стратосферы» океана, колебания солености чрезвычайно малы. Часто нижний предел находится значительно выше, например в полярных областях он равен всего 200 м. При всем разнообразии вертикального распределения солености ученым удалось выделить несколько характерных типов.
Колебания солености в открытых частях океанов во времени невелики — годовые не превышают 1‰. В глубине соленость почти постоянна и лежит в пределах точности измерений.
Таким образом, соленость — одна из консервативных характеристик режима всех океанов, и наблюдения ее позволяют распознавать природу различных процессов. В частности, благодаря измерениям солености в Тихом океане сделан вывод о движении вод течения Кромвелла. Подобные же исследования были проведены в 1963 г. при изучении движения средиземноморских вод в Атлантическом океане от Гибралтара до Британских островов. Обнаружилось, что соленые средиземноморские воды создают слой от 800 до 1500 м, простирающийся до юга Англии.