- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление - Rafael Lahoz-Beltra
Шрифт:
Интервал:
Закладка:
Программа остановка (кандидат, вход)
if input = вход и кандидат → остановится
then остановка (кандидат, вход) = истина
if input = вxoд и кандидат → не остановится
then остановка (кандидат, вход) = ложь;
Представим, что, используя программу остановка (кандидат, вход), мы пишем другую программу, которая называется парадокс (вход):
программа парадокс (вход)
if остановка (кандидат, вход) = ложь
then return истина
else return ложь
Сделаем в наших рассуждениях еще один шаг и вслед за Тьюрингом обозначим через Р программу парадокс. Далее выполним программу остановка (Р, Р). Если программа, вложенная в главную, вернет ответ «Ложь», значит, программа Р не останавливается, получив в качестве входных данных программу, идентичную себе самой, тогда основная программа парадокс (Р), вернув значение « Истина», должна остановиться, но это невозможно и, значит, ложно.
Напротив, если программа остановка (Р, Р) вернет ответ «Истина», так как программа Р остановит свое выполнение, получив в качестве входных данных величину Р, тогда программа парадокс Р не остановится, возвращая значение «Ложь». Принимая во внимание все противоречия, Тьюринг сделал вывод, что программа остановка (или halt) не позволяет оценить Р. Другими словами, проблема остановки неразрешима.
Хотя и не существует программы, которая служила бы универсальным инструментом для удовлетворительного решения проблемы остановки, ученые решили, что можно написать программу, дающую ответы на отдельные случаи, то есть, говоря современным языком, частные программы. Этот класс программ был назван программами PHS (partial halting solver), или программами, частично решающими проблему остановки. Однако со временем ситуация была сочтена такой же неразрешимой, как и с проблемой остановки. Вновь используя язык BASIC-256, напишем программу, которая получает на вход программу Р$. Задача состоит в получении на выходе (output) сообщения о том, останавливается ли выполнение программы Р$:
input Р$
if Р$ = "halt" then
print «программа останавливается ДА»
else
print «программа останавливается НЕТ»
endif
end
Мы приходим к поистине разочаровывающему выводу: нет уверенности, что такая простая с виду программа вернет пользователю корректный результат. Удивительно, что еще до появления компьютера и программного обеспечения Тьюринг смог прийти к выводу, что не существует механической процедуры, то есть машины Тьюринга или современной компьютерной программы, которая могла бы определить, остановится ли другая программа (или машина Тьюринга), получив на вход определенные данные. Этот вывод Тьюринг получил с помощью собственного изобретения — машины Тьюринга. Это еще раз доказывает гениальность ученого, который за свою короткую жизнь смог стать величайшим человеком XX века.
БЕСКОНЕЧНОСТЬ МАШИН ТЬЮРИНГАСовременный компьютер можно считать машиной Тьюринга, имеющей внутри себя еще одну такую машину. Для пояснения этой идеи приведем в пример один из первых компьютеров, ENIAC (Electronic Numerical Integrator And Computer). Этот мастодонт начала компьютерной эры может быть представлен как машина Тьюринга с тремя лентами: одна лента — для считывания входных данных, другая — для записи и возвращения результата, а третья выполняла роль памяти.
Современные компьютерыВ современном компьютере машина Тьюринга, имевшаяся в ENIAC, должна быть изменена, принимая во внимание, что входящая лента раздваивается на вспомогательную память (например, жесткий диск, SD- или флеш-карта) и клавиатуру. В такой машине в виде ленты выхода можно представить монитор, лента памяти соответствует RAM (ОЗУ). Если мы будем рассматривать операционную систему (разные версии Windows Microsoft, или Linux/Unix, или Mac OS) как машину Тьюринга, получится, что совокупность программ, позволяющих управлять ресурсами компьютера, — это машина Тьюринга, контролирующая другую такую же машину, которой является сам компьютер. Кроме того, когда программист пишет программу — совокупность инструкций, то есть исходный код, — он, в свою очередь, должен перевести эти инструкции в машинный или двоичный вид с помощью компилятора, который также можно считать машиной Тьюринга. После преобразования программа может быть выполнена микропроцессором — важнейшим устройством в компьютере. Лежащая в основе всего модель представляет и компьютер, и программу, с помощью которой мы переводим программы на язык, делающий возможным их выполнение, и операционную систему как машины Тьюринга. Другими словами, «все это программы, все это software», к которым нужно добавить электронные схемы, hardware, как будто бы речь идет о software, — эта важная идея является следствием разработок Тьюринга.
ПОСТРОИТЬ МАШИНУ ТЬЮРИНГАКак ни парадоксально это звучит, машина Тьюринга никогда не была воплощена в жизнь самим автором, несмотря на его самоотверженные усилия. Это устройство было и осталось теоретическим, но с его помощью стало возможным определить, какие вопросы могут быть решены с помощью компьютера. Однако исследователи и любители компьютеров по всему миру создали машины, в основе которых лежали теоретические разработки Тьюринга.
Одна из первых моделей появилась в 1972 году в Университете Брандейса в Массачусетсе (США). Ее создатель Ира Гилберт преследовал цель обучать студентов основам информатики. Чуть позже появилось несколько версий машины Тьюринга из деталей LEGO. С помощью соединяющихся друг с другом пластиковых кубиков Денис Кузено построил машину Тьюринга, хотя эта модель не была полностью автоматизирована. Для хранения в программируемом микроконтроллере таблицы переходов в ней применялись «умные» кубики LEGO RCX, использующиеся любителями-робототехниками. Еще одна модель машины Тьюринга была построена с помощью LEGO японцем Джо Нагатой. В 2010 году Майк Дейви создал винтажную модель в память о машине, описанной в работе Тьюринга, которая была опубликована в 1936 году. В его устройстве были использованы микроконтроллер Parallax Propeller и SD-карта, на которой хранились данные о состояниях машины.
Все эти примеры показывают, что практическая реализация на уровне hardware машины Тьюринга не так проста. В то же время существует немало примеров моделирования машины Тьюринга с помощью software, в основном потому что такой вариант гораздо доступнее. Среди самых интересных проектов можно назвать «Turing and Post Machines: C++ Simulators» — подборку программ на языке C++ для моделирования машины разных типов (детерминистской, индетерминистской, универсальной, с ошибками, с разными лентами и др.); симулятор Visual Turing, разработанный для операционной системы Windows и позволяющий увидеть в действии разные машины Тьюринга. Еще один пример простой машины Тьюринга на языке Java называется tmsimbgm. Существует оригинальная программа jkturing Джона Кеннеди из Университета Санта-Моники (США), созданная для операционной системы MS-DOS и обновленная для разных версий Windows, хотя этот вариант моделирования несколько более скромный, чем Visual Turing или Jflap. Очень любопытна модель Uber Turing Machine 2011 года, включающая алфавит для написания алгоритмов. Все эти программы вызывают интерес, потому что представляют собой варианты моделирования машины Тьюринга на универсальной машине Тьюринга — компьютере.
Одной из самых интересных задач является возможность создать машину Тьюринга, используя другую машину — игру «Жизнь». Этот автомат был придуман в 1970 году Джоном Хортоном Конвеем (р. 1937), профессором Кембриджского университета, где учился и Тьюринг. Речь идет о модели компьютера, которая была очень популярна среди любителей науки, особенно после того, как ее описал популяризатор математики Мартин Гарднер (1914-2010) в журнале Scientific American. Игра представляет собой клеточный автомат, то есть двумерную решетку, клетки которой заполнены конечными автоматами, также известными как машины конечных состояний. Речь идет об объекте, находящемся в одном из множества состояний, при этом данное множество конечно. Например, светофор может находиться в течение некоторого времени t в состоянии «зеленый», то есть в одном из трех возможных (красный, желтый, зеленый). Другой пример — нейрон, который может находиться в состоянии покоя или возбуждения. В машине Тьюринга, использующей для моделирования клеточный автомат, с течением времени (ί) состояния каждого конечного автомата обновляются. Обновление или расчет, каким будет состояние в следующий отрезок времени (£ + 1), происходит в соответствии с набором правил, известных как правила перехода, меняющие состояние каждого конечного автомата с учетом его актуального состояния и состояний соседних автоматов.

