- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Занимательная электроника - Юрий Ревич
Шрифт:
Интервал:
Закладка:
В заключение отметим, что схемы для построения термостатов невысокого класса, подобных описанным, существуют, разумеется, и в интегральном исполнении. Обычно они при этом совмещены с полупроводниковым датчиком температуры, который часто имеет и отдельный выход, что обеспечивает возможность показа температуры. С такими устройствами все знакомы, например, по встроенным в компьютерные материнские платы системам контроля температуры процессора и регулирования оборотов вентилятора.
О цифровых методах регулирования температуры мы немного поговорим в конце книги, а пока краткий курс теплотехники будем считать законченным и перейдем к другой теме — измерению этой самой температуры.
ГЛАВА 13
Как измерить температуру?
Электронные термометры
— Господи, до чего же мне холодно! — вскричал Планше, как только господин его скрылся из виду.
И, торопясь согреться, он немедленно постучался у дверей одного домика.
А Дюма. Три мушкетера
Прежде чем познакомиться с методами измерения температуры, неплохо бы попытаться понять, что это такое — температура? Вопрос не совсем дурацкий, как это может показаться на первый взгляд, потому что понятие температуры лежит в одном ряду с такими физическими абстракциями, как время, энтропия или электромагнитное поле. В отличие от последних двух, температуру мы можем ощущать физически, подобно расстоянию или массе, но на самом деле ясности в понимании сути дела это не добавляет. Так, течение времени мы тоже ощущаем, но на вопрос «что такое время?» сможет внятно ответить далеко не каждый — если вообще кто-нибудь знает ответ. И время, и температуру в смысле их измерения постигла похожая судьба — научились это делать с достаточной точностью в исторических масштабах совсем недавно.
Основы термометрииОпределение гласит: температура есть мера внутренней энергии тела. Мельчайшие частицы (атомы и молекулы), составляющие физические тела, все время движутся либо по некоторым траекториям в пространстве (в жидкостях и газах), либо колеблются около своего положения (в твердых телах). Чем интенсивнее они движутся, тем выше температура. Если в твердом теле она достигает некоторого критического значения, то атомы-молекулы срываются со своих мест, структура тела нарушается, и оно плавится, превращаясь в жидкость. Если повышать температуру дальше, то связи между частицами уже не могут победить возросшую интенсивность их движения, и жидкость начинает испаряться, превращаясь в газ. При высокой температуре нарушаются уже связи внутри молекул и образуется так называемая холодная плазма (например, пламя), при очень высокой — и внутри атомов, и вещество превращается в высокотемпературную плазму.
В реальности на эту упрощенную модель накладываются некоторые нюансы. Скажем, вещество может существовать при одних и тех же условиях в нескольких состояниях, например, как твердое тело в равновесии с жидкой и газообразной фазой — это так называемая тройная точка. Но нам сейчас важнее другое — из нарисованной картины следует, что должно быть такое состояние вещества, когда движения нет, все частицы стоят на месте и, следовательно, внутренняя энергия равна нулю. Это состояние существует и носит название абсолютного нуля температуры. Чему она равна при этом, вычислил теоретически еще в середине позапрошлого века ученый-физик лорд Кельвин. Оказалось, что абсолютный ноль, он же ноль абсолютной температурной шкалы (шкалы Кельвина), отстоит от точки замерзания воды на -273,15 °C. При этом градусы в шкале Кельвина (°К) равны градусам в привычной шкале Цельсия (°С), где за ноль принята точка замерзания воды. Так что перевод очень прост — чтобы получить температуру в градусах Цельсия, надо из градусов Кельвина вычесть величину 273. Чтобы подчеркнуть разницу между °К и °С, первые часто обозначают большой буквой T, а вторые — маленькой t. В англоязычных странах в быту традиционно используют шкалу Фаренгейта (обозначается заглавной F), в которой и ноль другой, и градусы меньше, поэтому пересчет относительно сложен:
* * *
Подробности
Так как на практике измерить внутреннюю энергию саму по себе невозможно, температуру измеряют по каким-то ее внешним проявлениям. Логично для этого использовать точки фазового перехода (плавления и кипения) химически чистых веществ. Эти точки стабильны и хорошо воспроизводятся. В настоящее время принята международная практическая температурная шкала, уточненная последний раз в 1990 году (МПТШ-90), в которой около двух десятков таких реперных (опорных) точек, охватывающих диапазон от -259,34 °C (тройная точка водорода) до 1084,62 °C (точка плавления меди). Точки замерзания и кипения воды, которые часто применяются для калибровки термометров на практике, ранее также относились к основным реперным точкам, но в МПТШ-90 они вошли с оговорками[17]. Между опорными точками температуру в этой шкале определяют платиновым термометром, имеющим сопротивление ровно 100 или 10 Ом при температуре 0 °C. Сопротивление платины при повышении температуры возрастает с наклоном 0,39250 %/°С, и, хотя зависимость эта не очень линейна, она весьма хорошо воспроизводится. По методике МПТШ изготавливают эталоны температуры: национальные, первичные, вторичные и т. д. Средства измерения, сертифицированные путем непосредственного сравнения с эталоном, называют образцовыми.
Все пользовательские измерительные инструменты (и не только температуры), поступающие на прилавок, на каком-то этапе сравнивались с образцовыми средствами. Сравнение вновь изготовленного измерителя с каким-либо средством измерения, которое мы принимаем за образцовое, называется градуировкой или калибровкой. Строго говоря, это одно и то же, однако под градуировкой чаще понимают создание градуировочной таблицы или формулы, по которой показания прибора пересчитываются в соответствующую физическую величину, а под калибровкой — подстройку самого прибора так, чтобы он непосредственно показывал эту физическую величину. С появлением компьютерных технологий разница между градуировкой и калибровкой практически исчезла. Процедура проверки уже готового средства измерения на соответствие образцовому средству измерения называется поверкой.
ДатчикиНа практике для измерения температуры электронными методами используют в основном две разновидности датчиков: металлические термометры сопротивления и полупроводниковые датчики. Термисторы (терморезисторы) для измерения температуры применяют редко, в некоторых специфических случаях, т. к. их единственное достоинство в этом плане — высокая чувствительность — не перевешивает многочисленные недостатки, среди которых в первую очередь нелинейность и, кроме того, невысокая стабильность. Правда, существуют специальные высокостабильные миниатюрные алмазные термисторы (выполненные на основе монокристаллов искусственного алмаза), которые могут работать при температурах до 600 °C, но их температурный коэффициент всего раза в полтора выше, чем у металлов, и они используются также в специфических случаях — например, в печках лазерных принтеров. Термисторы чаще применяют в схемах регуляторов температуры (см. главы 12 и 27), где их нелинейность не имеет значения.
Еще один способ очень точного измерения температуры предполагает использование специальных термочувствительных кварцевых резонаторов. О них мы еще будем говорить в главе 16, а здесь остановимся лишь на металлических и полупроводниковых датчиках, добавив вначале несколько слов про термисторы.
ТермисторыДля успешного применения термисторов стоит знать их основные свойства. Большинство так называемых NTC-терморезисторов (от английского Negative Temperature Coefficient) имеют падающую экспоненциальную зависимость сопротивления от температуры, которая с хорошей точностью описывается уравнением:
(1)
Здесь RT1 — номинальное сопротивление при температуре Т1 (обычно при 25 °C), В — коэффициент, имеющий размерность °К, который приводится в характеристиках термистора для некоторого диапазона температур, например, для 25-100 °C. При отсутствии фирменного технического описания величину В несложно вычислить исходя из двух измеренных значений RT, а для ориентировочных расчетов его можно принять равным в пределах 3500–4500.
График, соответствующий уравнению (1), построенный по данным для конкретного термистора В57164-К 103-J с номинальным сопротивлением 10 кОм при 25 °C, приведен на рис. 13.1, а числовые данные, по которым он построен, сведены в табл. 13.1. Из графика мы видим, что крутизна характеристики термистора с повышением температуры снижается (ее значения приведены в третьей колонке таблицы). Эта нелинейность делает термисторы крайне неудобным средством для измерения температур, зато высокая величина крутизны (в среднем раз в десять большая, чем у металлов) очень удобна при использовании их в качестве датчика для регуляторов температуры. Температурный диапазон применения NTC-термисторов ограничен пределами работоспособности полупроводниковых материалов (т. е. диапазоном от -55 до 125 °C).

