- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан
Шрифт:
Интервал:
Закладка:
Полная таблица была бы бесконечно длинной, так как топологические и колебательные числа могут принимать произвольные целые значения, однако представленный фрагмент таблицы достаточен для обсуждения. Из таблицы видно, что она соответствует ситуации больших топологических вкладов и малых колебательных вкладов: топологические вклады кратны 10, а колебательные вклады кратны 1/10.
Предположим теперь, что радиус циклического измерения сужается, скажем, с 10 до 9,2, затем до 7,1 и далее до 3,4, 2,2, 1,1, 0,7 и т. д. до 0,1 (1/10), где, в нашем примере, процесс сужения прекращается. Для такой геометрически иной формы вселенной Садового шланга можно построить аналогичную таблицу энергий струн. В ней топологические вклады кратны 1/10, а колебательные вклады кратны обратному значению, т. е. 10. Результаты сведены в табл. 10.2.
Таблица 10.2.Аналогична табл. 10.1, но значение радиуса выбрано равным 1/10
Колебательное число Топологическое число Полная энергия 1 1 10 + 1/10 = 10,1 1 2 10 + 2/10 = 10,2 1 3 10 + 3/10 = 10,3 1 4 10 + 4/10 = 10,4 2 1 20+ 1/10 = 20,1 2 2 20 + 2/10 = 20,2 2 3 20 + 3/10 = 20,3 2 4 20 + 4/10 = 20,4 3 1 30+ 1/10 = 30,1 3 2 30 + 2/10 = 30,2 3 3 30 + 3/10 = 30,3 3 4 30 + 4/10 = 30,4 4 1 40+ 1/10 = 40,1 4 2 40 + 2/10 = 40,2 4 3 40 + 3/10 = 40,3 4 4 40 + 4/10 = 40,4На первый взгляд может показаться, что таблицы совершенно различны. Но при более пристальном рассмотрении видно, что в столбцы полной энергии в обеих таблицах входят одинаковыеэлементы, хотя они и расположены в разном порядке. Чтобы найти элемент табл. 10.2, соответствующий данному элементу табл. 10.1, нужно просто поменять местами топологическое и колебательное число. Иными словами, колебательные и топологические вклады взаимно дополняют друг друга при изменении радиуса циклического измерения с 10 до 1/10. Поэтому с точки зрения полных энергий струн нет различиямежду этими двумя размерами циклического измерения. Как обмен типов акций в точности компенсировался обменом числа акций каждой из двух компаний, так и замена радиуса 10 на 1/10 в точности компенсируется заменой топологических и колебательных чисел. Кроме того, значения начального радиуса R= 10 и его обратного значения 1/10 выбраны в данном примере лишь для простоты, и результат будет тем же для любого радиуса. {90}
Табл. 10.1 и 10.2 не полны по двум причинам. Во-первых, как указано выше, здесь выбраны лишь некоторые из бесконечного набора колебательных и топологических чисел, возможных для струны. Это, разумеется, не является серьёзной проблемой — мы могли бы строить таблицу до тех пор, пока не иссякнет терпение, и убедились бы, что указанное свойство продолжает оставаться справедливым. Во-вторых, кроме топологического вклада в энергию мы до сих пор учитывали лишь однородные колебания струны. Сейчас необходимо учесть и обычные колебания, так как они дают дополнительный вклад в полную энергию струны и, кроме того, определяют переносимый струной заряд. Здесь важно отметить, что исследования свидетельствуют о независимости этих вкладов от радиуса. Поэтому, даже если эти вклады были бы включены в табл. 10.1 и 10.2, таблицы всё равно точно соответствовали бы друг другу, так как обычные колебательные вклады учитывались бы в каждой таблице совершенно одинаковым образом. Следовательно, можно заключить, что массы и заряды частиц во вселенной Садового шланга радиусом Rидентичны массам и зарядам частиц во вселенной Садового шланга радиусом 1/ R. А так как именно эти массы и заряды управляют фундаментальными физическими законами, нет никакого физического различия между двумя геометрически различными вселенными. Результаты любого эксперимента в одной вселенной и соответствующего эксперимента в другой вселенной будут в точности совпадать.
Спор двух профессоров
После превращения в двумерные существа Джордж и Грейс стали профессорами физики во вселенной Садового шланга. Они основали конкурирующие лаборатории, сотрудники каждой из которых вскоре заявили о том, что им удалось определить размер циклического измерения. На удивление, при всей безупречной репутации каждой лаборатории в области высокоточных исследований, результаты оказались разными. Джордж уверен в том, что радиус (в единицах планковской длины) равен R= 10, а Грейс утверждает, что значение радиуса равно R= 1/10.
«Грейс, — говорит Джордж, — мои вычисления по теории струн показывают, что если радиус циклического измерения равен 10, то энергии наблюдаемых мной струн должны соответствовать табл. 10.1. Я провёл масштабные эксперименты на новом ускорителе с энергиями порядка планковской, и результаты в точности подтвердили это предположение. Следовательно, я совершенно определённо заявляю, что радиус циклического измерения равен R= 10». В свою очередь, Грейс приводит в защиту своего результата в точности те же доводы, но её вывод состоит в том, что зарегистрированы значения энергий из табл. 10.2, и радиус, таким образом, равен R= 1/10.
Озарённая проблеском интуиции Грейс демонстрирует Джорджу, что несмотря на разное расположение элементов эти таблицы тождественны. Джордж, который, как всем известно, соображает несколько медленнее Грейс, отвечает: «Но как такое возможно? Я знаю, что, согласно принципам квантовой теории и свойствам намотанных струн, различные значения радиуса должны приводить к разным возможным значениям энергий и зарядов струн. И если эти значения согласуются, то и значения радиуса также должны находиться в согласии».
Грейс, во всеоружии своего нового понимания физики струн, отвечает: «То, что Вы говорите, почти, но не полностью правильно. Да, обычноверно, что для двух различных радиусов получаются различные допустимые энергии. Однако в частном случае, когда два значения радиуса обратно пропорциональны друг другу, например, как 10 и 1/10, допустимые энергии и заряды на самом деле одинаковы. Судите сами: то, что Вы назвали бы колебательной модой, я назвала бы топологической модой. Но природе безразлично, на каком языке мы говорим. Физические явления обусловлены свойствами фундаментальных составляющих— массами (энергиями) частиц и переносимыми ими зарядами. Не имеет значения, равен ли радиус Rили 1/ R: полный список значений свойств фундаментальных составляющих теории струн один и тот же».
В минуту прозрения Джордж отвечает: «Мне кажется, я понимаю. Хотя моё и Ваше детальное описание струн — их намотка на циклическое измерение или особенности их колебательного поведения — могут отличаться, полный список их физических характеристик одинаков. А так как физические свойства Вселенной зависят от свойств фундаментальных составляющих, нет ни различия между радиусами, которые обратно пропорциональны друг другу, ни способа определить это различие». Именно так.
Три вопроса
Здесь читатель может спросить: «Будь я существом, живущим на вселенной Садового шланга, я просто измерил бы длину окружности шланга рулеткой и однозначно определил бы радиус — без всяких “но” и “если”. Так к чему вся эта чепуха о невозможности отличить два разных радиуса? Кроме того, разве теория струн не распрощалась с масштабами меньше планковской длины — зачем же эти примеры циклических измерений с радиусами в доли планковской длины? И, если уж на то пошло, кого волнует эта двумерная вселенная Садового шланга? Что всё это добавляет к пониманию случая всехизмерений?»

