- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн
Шрифт:
Интервал:
Закладка:
О результатах своего анализа Израэль впервые рассказал 8 февраля 1967 г. на лекции в Королевском колледже в Лондоне. Название его лекции было загадочным, но Деннис Сиама из Кембриджа направил своих студентов в Лондон послушать ее. Один из этих студентов, Джордж Эллис, вспоминает: «Это была очень-очень интересная лекция. Это было что-то совершенно новое, совершенно неожиданное. Ничего подобного мы никогда прежде не слышали». Когда Израэль закончил, Чарльз Мизнер (бывший студент Уилера) встал и спросил: Что произойдет, если схлопывающаяся звезда вращается и имеет электрический заряд? Могут ли и здесь появиться две возможности: вообще не будет черной дыры или дыра будет иметь уникальную форму, полностью определяемую массой, вращением и зарядом схлопывающейся звезды? Ответ, в конце концов, оказался положительным, но только после того, как интуитивный вывод Зельдовича был подвергнут проверке.
* * *
Вспомним, что Зельдович, Дорошкевич и Новиков изучали слабо-деформированные звезды. Они исследовали звезды почти сферической формы с маленькими горками. Проведенный ими анализ и утверждения Зельдовича вызвали множество вопросов.
Каков будет результат схлопывания звезды, имеющей небольшую горку на поверхности? Приведет ли гора к огромному искривлению пространства-времени при приближении звезды к критической поверхности (вывод, отвергнутый интуицией Зельдовича)? Или же влияние горы исчезнет и останется совершенно сферическая черная дыра (вывод, к которому пришел Зельдович)? И если образуется совершенно сферическая черная дыра, как удается ей избавиться от гравитационного влияния горы? Что заставляет черную дыру становиться сферической?
Будучи одним из студентов Уилера, я взялся ответить на эти вопросы. Но не сам, а с помощью своих студентов. Шел 1968-й год. Я закончил свою диссертацию в Принстоне и вернулся в альма-матер, Калифорнийский технологический институт, сначала в качестве постдока, а затем профессора. И я начал собирать вокруг себя группу студентов, подобно тому, как это делал Уилер в Принстоне.
Со мной работал некто Ричард Прайс из Бруклина. Это был сильный молодой человек с лохматой бородой и весом фунтов в двести (плюс черный пояс по карате). Он уже принимал участие в нескольких моих исследованиях, включая работы с методами возмущений. Эти математические методы могли оказаться полезными при ответе на выше сформулированные вопросы. Теперь он был достаточно зрел и для того, чтобы взяться за более сложную задачу. Проверка интуитивного вывода Зельдовича вполне подходила для этой цели, если бы не одно обстоятельство: слишком многие взялись за нее. Муравьи гурьбой повалили на пикник. Прайсу следовало торопиться.
Он не успел. Другие обошли его на повороте. Он пришел на финиш третьим, после Новикова и Израэля. Но он смог получить гораздо более основательный и полный результат.
Достижения Прайса стали бессмертными благодаря перу Джека Смита, юмориста из Лос-Анджелес Таймс. В выпуске от 27 августа 1970 г. Смит описал свой визит в Калифорнийский технологический институт накануне: «После завтрака в местной столовой я в одиночестве прогуливался по университетскому городку. В воздухе была разлита Высокая Мысль. Оливковые ветви колыхались под ее порывами. Я заглянул в окно. Там стояла доска, усеянная уравнениями так плотно, как дорожка листьями в осеннем парке. Меж ними выделялись три английские фразы. Теорема Прайса: все, что может быть излучено, излучается. Наблюдение Шутца: все, что излучается, может быть излучено. ВСЕ может излучаться тогда и только тогда, когда оно излучается. Я шел и думал, до подобных ли перлов будет студентам осенью, когда в этих стенах появятся девушки-первокурсницы. Держу пари, «излучения» будет много».
Эта цитата требует пояснений. «Наблюдение Шутца» приведено для красного словца, но теорема Прайса «все, что может быть излучено, излучается» представляла собой серьезное доказательство утверждения Роджера Пенроуза, сделанного им в 1969 г.
Теорему Прайса можно проиллюстрировать с помощью схлопывания гористой звезды. На рис. 7.4 изображено такое схлопывание. В левой части рисунка дана пространственно-временная диаграмма (см. также рис. 6.7 главы 6). В правой части показана эволюция формы звезды и горизонта событий в последовательные моменты времени, снизу вверх («моментальные кадры»).
При схлопывании звезды (два нижних кадра на рис. 7.4) ее гора становится больше и, соответственно, растет «гористое» искажение пространственно-временной кривизны вокруг звезды. Затем, когда звезда ныряет под свою критическую поверхность и создает вокруг себя горизонт событий (средний кадр), искаженная пространственно-временная кривизна деформирует этот горизонт, на котором возникает гористый выступ. Последний, однако, не может существовать долго. Звездная гора, которая породила его, находится теперь внутри черной
7.4. Пространственно-временная диаграмма (слева) и последовательность моментальных кадров (справа), показывающая схлопывание гористой звезды с образованием черной дыры
дыры, поэтому горизонт событий не может больше чувствовать ее влияния. Выступ на горизонте событий не поддерживается больше этой горой. Горизонт отделывается от этого выступа единственным доступным способом: он преобразует его в «складки» кривизны пространства-времени (гравитационные волны — глава 10), которые распространяются во всех направлениях (два верхних кадра). Некоторые «складки» попадают в черную дыру, другие вылетают в окружающую Вселенную и, отлетая, оставляют черную дыру совершенной сферической формы.
Нечто подобное происходит, когда мы дергаем скрипичную струну. Пока мы держим струну, она остается деформированной; пока гора выступает из черной дыры, она деформирует вновь родившийся горизонт событий. Когда мы убираем палец со струны, она начинает колебаться и посылать звуковые волны в комнату. Они уносят энергию деформации струны, и струна вновь распрямляется. То же происходит тогда, когда гора скрывается внутри черной дыры. Она не может больше поддерживать горизонт событий деформированным, он начинает вибрировать и испускать гравитационные волны. Волны уносят энергию деформации горизонта событий, и горизонт принимает совершенно сферическую форму.
Как это схлопывание с горой связано с теоремой Прайса? В соответствии с законами физики, гористый выступ на горизонте событий может превратиться в гравитационное излучение (складки кривизны). Теорема Прайса утверждает, что этот выступ должен превратиться в гравитационные волны и исчезнуть. Это и есть механизм «безволосости».
Теорема Прайса объясняет не только то, как деформированная черная дыра избавляется от своей деформации, но и то, как замагниченная черная дыра теряет свое магнитное поле (рис. 7.5). (Этот последний случай был рассчитан на компьютере Вернером Израэлем и двумя его студентами из Канады, Виценте де ла Круз и Тедом Чейзом, еще до открытия теоремы Прайса.) В результате схлопывания замагниченной звезды возникает замагниченная черная дыра. Перед тем, как горизонт событий поглощает схлопывающуюся звезду (рис. 7.5а), магнитное поле становится неотъемлемой частью звезды; электрические токи внутри звезды препятствуют исчезновению этого поля. После того как горизонт событий поглотил звезду (рис. 7.56), поле больше не чувствует электрических токов звезды; они больше не удерживают его. Поле теперь пронизывает не звезду, а горизонт событий, но горизонт не способен его удержать. В соответствии с законами физики, поле может превратиться в электромагнитное излучение («дрожание» магнитной и электрической силы), а теорема Прайса утверждает, что это так и будет (рис. 7.5в). Электромагнитное излучение рассеивается, частично внутрь черной дыры и частично от нее, а дыра становится незамагниченной (рис. 7.5 г).
7.5. Последовательность моментальных кадров, показывающих схлопывание замагниченной звезды (а) с образованием черной дыры (б). Черная дыра вначале наследует магнитное поле звезды. Однако дыра не может удержать это поле. Поле соскальзывает с нее (в), превращается в электромагнитное излучение и улетает (г)
Итак, как мы видели, горы и магнитные поля могут рассеиваться. Что же тогда остается? Что не может превратиться в излучение? Ответ простой: среди законов физики существуют особые законы, называемые законами сохранения. В соответствии с этими законами, существуют некоторые величины, которые никогда не могут колебаться и превращаться в излучение и покидать окрестности черной дыры. Этими сохраняющимися величинами являются: гравитационное притяжение черной дыры, закручивание пространства из-за ее вращения (которую мы будем обсуждать дальше) и радиальные линии электрического поля, возникающие благодаря электрическому заряду черной дыры и направленные наружу (мы вернемся к этому позже).[84]

