Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Физика » Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов

Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов

Читать онлайн Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 62 63 64 65 66 67 68 69 70 ... 104
Перейти на страницу:

Детальная картина процессов кратерообразования может быть найдена в ряде работ [Иванов, 1981; Мелош, 1994]. Приведем несколько примеров.

Рис. 8.6. Распределение земных кратеров по размерам

Кратер Метеор (кратер Бэрринджера, США) — первый достоверно идентифицированный земной кратер. Это простой кратер, имеющий чашеобразную форму диаметром 1,2 км и глубиной около 200 м (рис. 8.7). Кратер образовался в результате удара железного астероида размером 50–70 м. Ударник интенсивно разрушался во время движения в атмосфере. Многие фрагменты упали с небольшой скоростью и были позднее найдены вблизи кратера в виде метеоритов Каньона дьявола. Но в среднем струя фрагментов сохранила высокую (> 15 км/с) скорость, поэтому внутри кратера и на его валу найдены кусочки расплава (и мишени, и ударника), а также стишовит и коэсит — фазы высокого давления кварца.

Кратер Рис в Германии (см. рис. 8.8 на вклейке) диаметром около 25 км образовался 15 млн лет назад [Stöffler et al., 2002]. Уникальной чертой этого кратера являются его хорошо сохранившиеся выбросы, которые вблизи кратера (на расстояниях до 40 км) образуют двойной слой, а в дальней зоне (200–400 км) переходят в поля рассеяния тектитов. Крупные фрагменты выбросов и блоки обрушения вала (размером до 1 км) находятся между внутренним (10 км) и внешним (25 км) валами кратера.

Рис. 8.7. Кратер Метеор (Barringer Meteorite Crater, Arizona). Источник: http://interest-planet.ru/uploads/images/7/e/d/e/10/42855929e7.jpg

Попигайский ударный кратер диаметром 100 км возник 36 млн лет назад в Восточной Сибири [Масайтис и др., 1998]. Диаметр создавшего его ударника оценивается в 8 км при скорости 15 км/с; начальная кинетическая энергия ударника эквивалентна энергии 2 107 Мт ТНТ. Процесс образования кратера показан на рис. 8.9. Согласно расчетам [Иванов, 2005], переходный кратер к моменту 200 с после удара достиг диаметра около 50 км и глубины 18 км, которая примерно равна половине толщины земной коры. В дальнейшем за счет коллапса кратера его диаметр увеличился до 100 км, а глубина уменьшилась до 1–2 км. Выбросы из кратера (микрокриститы) найдены на расстояниях в тысячи км — в Атлантическом океане [Kettrup et al., 2003].

Кратер Чиксулуб (Мексика) образовался при ударе астероида размером ∼ 12–15 км в шельфовую зону Мексиканского залива 65 млн лет назад. Кратер имеет диаметр 180 км и погребен под километровым слоем осадочных пород. Образование кратера совпадает по времени с массовым вымиранием биоты, хотя причины этого вымирания до сих пор дискутируются (см. раздел 8.6.2).

8.2.2. Сейсмические эффекты. Ударные волны быстро затухают с увеличением расстояния от кратера и переходят в сейсмические. Для оценки амплитуды сейсмических волн можно использовать выражение для максимальной скорости смещения твердой породы Um, полученное для подземных ядерных взрывов [Родионов и др., 1971]: Um = 24(q1/3/R)1,75, где Um в см/с, q — энергия в кт ТНТ, R — расстояние в км. Необходимо иметь в виду, что как взрыв на поверхности, так и падение астероида менее эффективны, чем подземный взрыв.

Рис. 8.9. Последовательность событий при образовании модельного Попигайского кратера: а — исходное положение сферического ударника и слоистой мишени, б — 23 секунды после удара, переходная полость кратера достигает максимальной глубины около 19 км, в — 115 секунд после удара, коллапс переходной полости (подъем пород в центре за счет оседания бортов) приводит к образованию «переходного холма» высотой до 5 км, глубинные породы под кратером поднимаются выше уровня их исходного залегания, г — 200 секунд после удара, «переходной холм» растекается в поле тяжести, в то время как породы в глубине остановились за счет восстановления нормальной величины внутреннего трения, скорость приповерхностного растекания достигает 200 м/с, д — 300 секунд после удара, движение близко к остановке, е — 400 секунд после удара, кратер приобретает устойчивую конечную форму

Если мы заменим величину q на 0,1q (т. е. будем считать, что удар в 10 раз менее эффективен, чем взрыв), то на расстоянии 1000 км получим максимальную скорость смещения 6 см/с, если энергия удара составляет 106 Мт. Как следует из анализа разрушения типовых строений [Садовский, Костюченко, 1974], это значение скорости — критическое, так как при более высокой скорости происходит значительное повреждение строений или даже их полное разрушение. Экстраполяция формулы на более крупные удары, по-видимому, некорректна. Тем не менее, в расчетах удара, образовавшего кратер Чиксулуб (энергия удара порядка 108 Мт ТНТ), на расстоянии 300 км от центра кратера получены [Иванов, 2005] максимальные расчетные скорости грунта порядка 10 м/с и смещения 70–80 м, которые неплохо согласуются с предложенной оценкой.

Сравним сейсмический эффект от падения астероида с наиболее разрушительным, катастрофическим землетрясением. Для оценки этого эффекта мы используем величину магнитуды M по шкале Гутенберга — Рихтера [Садовский и др., 1987]: lg Es = 4,8 + (3/2)M, где Es — сейсмическая энергия в Дж, причем величина Es для подземного взрыва составляет приблизительно 0,05–0,1 от полной энергии взрыва. Подобные значения M получаются, если взять величину M = 6,5 для наиболее сильного взрыва на острове Амчитка на Алеутских островах с энергией E = 5 Мт [Gerstl and Zardecki, 1982] и затем использовать указанное соотношение. Для удара с полной энергией 106 Мт, принимая сейсмическую эффективность равной 0,05, по той же формуле получаем M = 9. Землетрясений с такими магнитудами не было зарегистрировано в течение последнего столетия. При землетрясении в Китае, для которого величина M = 8,5, погибло более 100 000 человек, и радиус зоны разрушений был больше 600 км. Это значение M близко к значению, полученному при использовании расчетной максимальной скорости. Для кинетической энергии 106 Мт площадь разрушения при M = 9 увеличивается до 1000 км. В такой зоне могут жить порядка 3 107 человек (при использовании средней плотности населения Земли).

Вопрос о сейсмической эффективности удара (доле кинетической энергии ударника, переходящей в энергию сейсмической волны) далек от своего разрешения. Согласно экспериментальным данным [Schultz and Gault, 1975], эта величина лежит в диапазоне 10-5–10-3. В работах [Мелош, 1994] и [Collins et al., 2005] берется некоторое среднее значение эффективности и конечное выражение для магнитуды выглядит следующим образом: M = (2/3) lg E — 5,87. Для E = 106 Мт = 4 1021 Дж получаем M = 8,5, т. е. несколько меньше, чем раньше.

Воздействие сейсмических волн на здания, сооружения, инициирование ими оползней, лавин и т. д. существенно зависит от расстояния до эпицентра, локальной и региональной геологии. Для учета этих факторов вводится понятие балльности или эффективной магнитуды [Collins et al., 2005]. Вообще говоря, возможность использования данных по землетрясениям для случая ударов космических тел не является очевидной, так как, во-первых, вычисленные магнитуды обычно намного выше магнитуд сильнейших землетрясений и, во-вторых, приведенные зависимости различны для разных районов Земли, что связано с существенной гетерогенностью земной коры.

Если характерный размер зоны разрушения порядка 10 км, то на распространение волны и развитие такой зоны влияет слоистая структура Земли с характерным вертикальным масштабом в несколько км и даже десятков км. Согласно данным, приведенным в работе [Краснопевцева, Щукин, 2004], в отдельных районах Северной Евразии скорость продольных волн Vp возрастает с глубиной от значений∼ 5 км/с в верхних слоях до 7 км/с на глубине∼ 40 км (граница Мохоровичича). В других районах имеют место промежуточные слои (на глубинах, скажем, 15–20 км) с пониженной скоростью Vp. В третьих районах такой слой располагается на глубинах 25–30 км или, наоборот, слои с повышенными значениями Vp имеются на глубинах 20–25 км. Таким образом, могут возникать эффекты волноводного распространения сейсмических волн. Наконец, в действительности эти низкоскоростные и высокоскоростные слои неоднородны по горизонтали из-за разбиения земной коры на отдельные блоки [Кочарян, Спивак, 2003].

Блочная структура земной коры существует во всех регионах. Так, в штатах Невада и Колорадо на участке длиной около 300 км, проходящем вдоль 39-й параллели, выявлено 9 довольно крупных разломов, простирающихся до границы Мохоровичича (расположенной в данном районе на глубине около 30 км) и наклоненных под различными углами [Niemi et al., 2004]. Квазивертикальные и квазигоризонтальные разломы, заполненные раздробленной породой, могут существенно изменить параметры сейсмической волны за разломом по сравнению с амплитудой до разлома.

1 ... 62 63 64 65 66 67 68 69 70 ... 104
Перейти на страницу:
На этой странице вы можете бесплатно скачать Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов торрент бесплатно.
Комментарии