- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Леонард Сасскинд
Шрифт:
Интервал:
Закладка:
Все силы в конечном счете связаны с микроскопическими силами, действующими между отдельными частицами. Но откуда берутся эти межчастичные силы? Для Ньютона универсальная силапритяжения, действующая между массами, была просто физическим фактом — в действительности он смог ее только описать, но не объяснить. Однако в течение девятнадцатого и двадцатого столетий такие физики, как Майкл Фарадей, Джеймс Клерк Максвелл, Альберт Эйнштейн и Ричард Фейнман, сделали блестящие открытия, объяснявшие силы через стоящие за ними более фундаментальные концепции.
Согласно Фарадею и Максвеллу, электрические заряды притягиваются и отталкиваются не непосредственно; в пространстве между зарядами существует посредник, передающий взаимодействие. Представьте себе «Слинки» — эту ленивую игрушечную пружинку, — натянутую между двумя разнесенными на некоторое расстояние шарами.
Каждый из шаров подвергается воздействию силы только со стороны присоединенного к нему конца «Слинки». Затем каждый фрагмент «Слинки» воздействует на своих соседей. Сила передается по «Слинки», пока не передаст натяжение к объекту на другом конце. Может казаться, что два объекта притягиваются друг к другу, но это иллюзия, созданная посредничающей между ними «Слинки».
Когда доходит до электрически заряженных частиц, посредничающие агенты — это заполняющие пространство между ними электрическое и магнитное поля. Хотя они невидимы, эти поля совершенно реальны: это непрерывные невидимые возмущения пространства, которые переносят взаимодействия между зарядами.
Эйнштейн в своей теории гравитации пошел еще глубже. Массы искривляют геометрию пространства-времени в своей окрестности и благодаря этому искажают траектории других масс. Искажения геометрии тоже можно рассматривать как поля.
Электрическое поле положительного заряда
Магнитное поле стержневого магнита
Могло показаться, что на этом все кончится. Так и было, пока не появился Ричард Фейнман с квантовой теорией сил, которая на первый взгляд была совершенно не похожа на теории поля Фарадея — Максвелла и Эйнштейна. Его теория начинается с представления о том, что электрически заряженные частицы могут испускать (бросать) и поглощать (ловить) фотоны. В этой идее еще не было ничего странного; давно уже было понято, что электроны испускают рентгеновские лучи, когда внезапно останавливаются у препятствия в рентгеновской трубке. Обратный процесс поглощения был описан Эйнштейном в его статье, где он впервые ввел идею световых квантов.
Фейнман изображал заряженные частицы в виде жонглеров фотонами, постоянно испускающими и поглощающими их и создающими в пространстве, окружающем заряд, огромное число фотонов. Отдельный покоящийся электрон — это идеальный жонглер, никогда не теряющий то, что подбросил. Но, как и в случае с жонглером-человеком в железнодорожном вагоне, неожиданное ускорение может все нарушить. Заряд может сместиться со своей позиции, из-за чего окажется не в том месте, чтобы поглотить фотон. Этот упущенный фотон улетает прочь и становится частью излучаемого света.
Вернемся в железнодорожный вагон, где в поезд вместе с жонглером садится его партнер, и они вдвоем решают попрактиковаться в командной жонглерской работе. В основном каждый жонглер ловит свои собственные броски, но при сближении время от времени каждый из них может ловить шары, брошенные другим. То же самое происходит, когда сближаются два электрических заряда. Окружающие их облака фотонов смешиваются, и один заряд может поглощать фотоны, испущенные другим. Этот процесс называется обменом фотонами.
В результате обмена фотонами возникают силы, с которыми заряды действуют друг на друга. На сложный вопрос о том, будет ли сила притягивающей или отталкивающей, можно ответить лишь с учетом всех тонкостей квантовой механики. Достаточно сказать, что, когда Фейнман выполнял свои вычисления, он обнаружил то же, что Фарадей и Максвелл: одинаковые заряды отталкиваются, а противоположные — притягиваются.
Интересно сравнить жонглерские навыки электронов и жонглеров-людей. Человек, по-видимому, может бросать и ловить предметы несколько раз в секунду, однако электрон испускает и поглощает фотоны примерно 1019 раз в секунду.
По теории Фейнмана, жонглерами являются все материальные частицы, а не только электрические заряды. Любая форма материи испускает и поглощает гравитоны — кванты гравитационного поля. Земля и Солнце окружены облаками гравитонов, которые перемешиваются и участвуют в обмене. А в результате гравитационная сила удерживает Землю на орбите.
Сколь же часто отдельный электрон испускает гравитон? Ответ довольно неожиданный: совсем нечасто. В среднем время, необходимое электрону, чтобы испустить гравитон, превышает весь возраст Вселенной. Вот почему, по фейнмановской теории, гравитационное взаимодействие между элементарными частицами настолько слабее электрического.
Так какая же теория верна: полевая Фарадея — Максвелла — Эйнштейна или фейнмановская теория частиц-жонглеров? Они кажутся слишком разными, чтобы быть правильными одновременно.
И тем не менее обе они верны. Все дело в квантовой дополнительности между волнами и частицами, о которой я рассказывал в главе 4. Волны — это полевая концепция: световые волны — это не что иное, как быстрые колебания электромагнитных полей. Но свет — это частицы, фотоны. Так что картины с фейнмановскими частицами и максвелловскими полями — просто еще один пример квантовой дополнительности. Квантовое поле, порожденное облаком частиц, которыми жонглируют, называется конденсатом.
Струнная шуткаПозвольте мне рассказать свежий анекдот, который стал популярен среди струнных теоретиков.
Пара струн заходит в бар и заказывают по пиву. Бармен говорит одной из них: «Давно тебя не видел. Как дела?» Затем поворачивается к другой струне и спрашивает: «Ты ведь здесь впервые? Ты так же замкнут, как и твоя подруга?» И получает в ответ: «Нет, я чертов узел».
М-да… А чего вы ждали от струнного теоретика?
Шутка на этом заканчивается, но история продолжается. Бармен чувствует легкое опьянение. Возможно, это результат лишней рюмки, тайно принятой за стойкой, или, быть может, мерцание квантовых флуктуаций зашедшей пары немного вскружило ему голову. Но нет, это что-то большее, чем стандартная дрожь; струны, похоже, движутся очень странно, как будто какая-то скрытая сила тянет и соединяет их между собой. Каждый раз, когда одна струна делает неожиданное движение, мгновением позже другая срывается со своего сиденья, и наоборот. Но внешне их, кажется, ничто не соединяет.
Удивленный этим загадочным поведением бармен внимательно всматривается в пространство между ними, пытаясь разобраться. Поначалу он может разглядеть только слабое мерцание, дрожащее искажение геометрии, но где-то через минуту он замечает, что маленькие кусочки струн постоянно отрываются от тел двух клиентов, формируя между ними конденсат. Именно этот конденсат притягивает их и заставляет резко двигаться.
Струны испускают и поглощают другие струны. Рассмотрим случай замкнутых струн. В дополнение к обычной дрожи нулевых колебаний квантовая струна может разделиться на две струны. Я опишу этот процесс в главе 21, а пока нам хватит простой картинки, иллюстрирующей эту идею. Вот изображение замкнутой струны.
Струна извивается и дрожит, пока на ней не появляется небольшое выступающее ушко.
Теперь струна готова разделиться и излучить свой небольшой кусочек.
Противоположное тоже возможно: маленькая струна, встретив Другую, большую струну, может быть поглощена в ходе обратного процесса.
Небольшие замкнутые струнные кольца — это гравитоны, роящиеся вокруг более крупных струн и образующие конденсат, который очень напоминает по своим проявлениям гравитационное поле. Гравитоны — кванты гравитационного поля — похожи по строению на глюболы ядерной физики, но в 1019 раз меньше. Интересно, как все это связано (если связано) с ядерной физикой?
Некоторых специалистов из других областей физики раздражает энтузиазм струнных теоретиков, которые уверяют: «Прекрасная, элегантная, непротиворечивая, устойчивая математика теории струн приводит к удивительным, невероятным, фантастическим фактам, касающимся сил гравитации, а значит, она должна быть верной». Однако для скептически настроенного стороннего наблюдателя подобные славословия, даже если они оправданы, никак не повышают убедительность аргументов. Если теория струн дает верную картину реальности, то подтверждать это надо убедительными экспериментальными предсказаниями и эмпирическими проверками, а не восхвалениями. Скептики правы, но правы и струнные теоретики. Настоящая проблема заключается в чрезвычайной трудности экспериментирования с объектами размером, в миллиард миллиардов раз меньшим протона. Но будет теория струн в итоге подтверждена экспериментальными данными или нет, в настоящее время это надежная математическая лаборатория, в которой проверяются различные идеи относительно того, как гравитация согласуется с квантовой механикой.

