- Любовные романы
- Фантастика и фэнтези
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Статьи - Никола Тесла
Шрифт:
Интервал:
Закладка:
Применение высоких напряжений имеет огромное значение, поскольку позволяет значительно сократить время экспозиции и воздействовать на пластину с гораздо больших расстояний. Я сейчас пытаюсь определить точное соотношение между напряжением и результатом воздействия на чувствительную пластину. Считаю необходимым отметить, что электрод должен быть алюминиевым, так как платиновый электрод, который упорно продолжают использовать, дает худшие результаты, а трубка выходит из строя за сравнительно короткое время. Некоторые экспериментаторы, возможно, увидят трудности в поддержании постоянного вакуума, изменение которого обусловлено происходящим в трубке процессом абсорбции (на что ранее указывал Крукс), вследствие чего при длительной работе вакуум может увеличиться. Найденный мной удобный способ препятствовать этому процессу состоит в следующем. Экран, желательно алюминиевая пластина s (ил. 2), помещается прямо на изоляцию питающего провода С, но на некотором расстоянии от конца. Подходящее расстояние можно определить только опытным путем. Если выбрано правильное расстояние, то в процессе работы трубки изоляция нагревается, и время от времени от провода С к алюминиевой пластине s по изоляции w пробегает маленькая яркая искра. Прохождение искры вызывает образование газов, которые несколько ослабляют вакуум, и, таким образом, с помощью небольшой ловкой манипуляции его можно постоянно поддерживать на необходимом уровне. Другой способ добиться того же результата в трубке, представленный на ил. 1, состоит в столь значительном удлинении изоляции внутри трубки, что при работе в обычном режиме изоляция нагревается в достаточной мере, чтобы высвободить газы в необходимом количестве. Для этого целесообразно опустить экран S с бронзовым покрытием несколько ниже изоляции, с тем чтобы можно было видеть искру. Существует, однако, много других способов преодоления этой помехи, которая может вызывать некоторую досаду у тех, кто работает с аппаратом, не отвечающим требованиям.
Чтобы аппарат работал наилучшим образом, экспериментатору необходимо пройти каждый из этапов, на которые я указывал ранее и через которые должна пройти трубка, пока в ней создается разреженное пространство. Сначала он увидит, что, когда явления, описанные Круксом (феномены Крукса) проявятся наиболее ярко, возникнет стример красноватого цвета, исходящий из электрода и первое время почти полностью покрывающий его. До этого момента трубка почти не оказывает воздействия на чувствительную пластину, хотя стекло в месте удара очень горячее. Красноватый стример постепенно исчезает, и только перед тем, как он перестает быть видимым, трубка начинает заметно лучше работать, но воздействие на пластину всё еще очень слабо. Вскоре становится виден белый или даже голубоватый поток, и через некоторое время стекло в дне трубки приобретает глянец. Температура еще более повышается, и трубка на всём своем протяжении чрезвычайно ярко фосфоресцирует. Кому-то покажется, что такая трубка должна действовать эффективно, но внешность часто обманчива — красивая трубка всё еще не работает. Даже когда исчезает белый или голубоватый поток, а стекло в нижней части трубки такое горячее, что почти плавится, воздействие на пластину очень мало. И тогда на нижней части трубки вдруг появляется переливающийся узор в виде звезды, словно электрод отбрасывает от себя капли жидкости. С этого момента мощность трубки десятикратно увеличивается, и для получения хороших результатов ее всегда следует удерживать на этом уровне.
Несмотря на широко распространенное мнение о том, что вакуум Крукса недостаточен для создания феномена излучений Рентгена, тем не менее позволю отметить, что это совершенно неверно. Ведь и феномен Крукса не обнаруживается при определенной степени разрежения, но проявляется даже при слабых вакуумах в том случае, если потенциал достаточно высок. Это столь же верно и для лучей Рентгена. Естественно, чтобы проверить это, необходимо принять меры предосторожности, не допускающие перегрева трубки при увеличении напряжения. Этого легко добиться, уменьшая число импульсов или их длительность, когда возрастает потенциал. Для таких экспериментов, видимо, будет полезным использовать вместе с обычной индукционной катушкой вращающийся переключатель вместо вибрационного. Меняя скорость вращения, а также регулируя продолжительность контакта, можно откорректировать условия, соответствующие уровню вакуума и используемому потенциалу.
В экспериментах с отраженными лучами, о которых здесь говорится, я использовал аппарат, представленный на ил. 2. Он состоит из ящика, повторяющего форму буквы Т квадратного поперечного сечения. Стенки ящика изготовлены из свинца толщиной более одной восьмой дюйма. В ходе экспериментов обнаружилось, что свинец совершенно непроницаем для лучей даже при длительной экспозиции. На верхнем конце прочно закреплена колба b, вставленная в трубку t из толстого богемского стекла, которая проходит внутрь свинцового ящика на некоторую глубину. Нижний конец ящика плотно закрыт кассетой P1, в которой находится чувствительная пленка p1, имеющая обычную защиту, боковой конец закрывался такой же кассетой P с чувствительной защищенной пленкой p. Чтобы получить объективную картину, объекты о и о1 должны быть абсолютно одинаковыми и помещаться в центре экранов, защищающих чувствительные пластины. В центральной части ящика предусмотрено место для пластины r из материала, отражающая способность которого подвергается проверке, а размеры ящика таковы, что отраженный луч и прямой луч должны проходить одно и то же расстояние, при этом отражающая пластина располагается под углом 45 градусов как к падающему лучу, так и к отраженному. Были предприняты меры предосторожности, исключающие любую возможность воздействия на пластину p, кроме воздействия отраженных лучей, а отражающая пластина r установлена таким образом, чтобы плотно прилегать по всему периметру внутри свинцового ящика, так что лучи никак не могут попасть на пленку p1, не пройдя сквозь пластину, подвергаемую проверке. В своих первых опытах с отражением я наблюдал только результаты воздействия отраженных лучей, но в этом случае, по предложению профессора У.-А. Энтони, применил указанный выше способ для одновременного исследования действия прямых лучей, которые в итоге проходили сквозь отражающую пластину. С помощью этого метода можно было сравнить количество посланного и отраженного излучения. Стеклянная трубка t с находящейся внутри нее колбой b предназначена для придания потоку параллельности и интенсивности. Делая снимки с разных расстояний, я обнаружил, что и на значительных расстояниях разброс пучка лучей или потока частиц оказался весьма невелик.
Чтобы уменьшить погрешность, неизбежно возникающую при слишком продолжительной экспозиции и очень маленьком расстоянии, я уменьшил ее время до одного часа, а суммарное расстояние, которое лучи должны проходить, прежде чем они достигнут чувствительную пластину, составляло 20 дюймов, при этом расстояние от дна колбы до отражающей пластины составляло 13 дюймов.
Нет необходимости говорить о том, что были приняты все меры предосторожности в отношении чувствительных пластин — поддерживался постоянный потенциал, сохранялся однородный характер работы колбы, условия в целом оставались неизменными во время этих исследований. Подлежавшие проверке пластины были одного размера — они должны соответствовать предусмотренному для них месту в свинцовом ящике. В качестве проводников исследовались латунь, инструментальная сталь, цинк, алюминий, медь, свинец, серебро, олово и никель, а в качестве изоляционных материалов — флинтглас, эбонит и слюда. Результаты исследований приведены в таблице 1.
Сравнительный анализ, как и в предыдущих экспериментах, оптической плотности отпечатка от отраженных лучей и отпечатка от прямых, полученных в результате непосредственной экспозиции одной и той же лампы и с одинакового расстояния, то есть расчет времени экспозиции с учетом того, что действие на пластину было пропорционально времени, привел к результатам, проиллюстрированным в таблице 2.
Таблица 1
Отражающее вещество Отпечаток от пронизывающих лучей Отпечаток от отраженных лучей Латунь Контрастный Удовлетворительно-контрастный Инструментальная сталь Едва различимый Очень слабый Цинк Отсутствует Очень контрастный Алюминий Очень контрастный Отсутствует Медь Отсутствует Удовлетворительно-контрастный, но намного слабее, чем цинк Свинец Отсутствует Очень контрастный, но несколько слабее, чем цинк Серебро Контрастный, использовалась тонкая пластина Слабее, чем медь Олово Отсутствует Очень контрастный, почти как свинец Никель Отсутствует Почти как медь Слюда Очень контрастный Слабый Флинтглас Очень контрастный Очень контрастный, почти как свинец Эбонит Контрастный Почти как медьТаблица 2