- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Интернет-журнал 'Домашняя лаборатория', 2007 №12 - Журнал «Домашняя лаборатория»
Шрифт:
Интервал:
Закладка:
См. также статьи «Квантовая теория», «Радиоактивность 1».
ПРОСТОЕ ГАРМОНИЧЕСКОЕ КОЛЕБАНИЕ
Объект, совершающий колебательные движения, перемещается взад и вперед вдоль линии.
• Амплитудой его движения называется максимальное перемещение от центра колебательных движений.
• Периодом колебаний Тn называется время, которое требуется для завершения цикла колебаний (движение от одной крайней точки к другой и обратно).
Перемещение тела, совершающего колебательные движения, называется простым гармоническим движением, если ускорение пропорционально перемещению от центральной точки колебаний. Это условие можно выразить в виде уравнения «ускорение = — коэффициент х перемещение», где минус означает, что ускорение всегда направлено к центру, а перемещение измеряется от центра. Коэффициент пропорциональности в этом уравнении равен квадрату круговой частоты ω, которая равна 2π/Тn. Таким образом, при гармоническом колебании ускорение α и перемещение s должны соответствовать уравнению а = — ω2s. Ясно, что ускорение тела достигает максимального значения в точке наибольшего удаления от центра колебаний.
В системе, где тело массой m совершает колебания вследствие действия одной или нескольких пружин, сила, возвращающая тело в точку равновесия, зависит от степени растяжения пружин. Система пружин подчиняется закону Гука, а именно: сила растяжения равна he, где е — деформация (растяжение) пружины, k — постоянный коэффициент. Таким образом сила, стремящаяся восстановить исходное состояние, F = — ks для перемещения s от точки равновесия. Из второго закона Ньютона (F = mа) получаем а = F/m = ~(k/m)s. Это гармоническое колебательное движение и k/m = ω2. Следовательно, период колебаний Тn = 2π/ω = 2π(m/k)1/2.
Если масса увеличивается или пружина становится слабее, то период колебаний также увеличивается. Любая система, состоящая из одной или нескольких пружин, вызывает колебания, период которых рассчитывается по приведенной выше формуле.
См. также статью «Сила и движение».
РАВНОВЕСИЕ СИЛ
Покоящееся тело, на которое действует несколько сил, находится в состоянии статического равновесия, если эти силы уравновешивают друг друга и вращательные эффекты также равны.
Силы, действующие на тело, находятся в равновесии, если их векторы при сложении образуют замкнутый многоугольник. Действие сил на тело можно рассмотреть при помощи диаграммы, на которой отмечены эти векторы; при сложении векторов к концу первого отрезка прикладывается другой, а суммой, т. е. равнодействующей силой, является вектор, проведенный из начала первого вектора к концу второго. Тело находится в состоянии статического равновесия, если вектор равнодействующей силы равен нулю (представляет собой точку, а так бывает, когда конец последнего вектора совпадает с началом первого, как в случае с замкнутым многоугольником).
Сумма вращательных эффектов равна нулю, если отдельные вращательные эффекты сил, приложенных к точке, уравновешивают друг друга. Вращательный эффект силы, приложенной к точке, называется моментом силы и определяется как произведение ее модуля на кратчайшее расстояние (перпендикуляр) от точки до прямой, вдоль которой действует сила. Правило, согласно которому общий вращательный эффект действующих на тело сил должен быть равным нулю, называется принципом сохранения момента. Обычно говорят, что сумма моментов, направленных по часовой стрелке, должна быть равна сумме моментов, направленных против часовой стрелки. Чтобы тело, на которое действует несколько сил, пребывало в состоянии статического равновесия, необходимы следующие условия:
• равнодействующая сила равна нулю, когда сумма векторов сил представляет собой замкнутый многоугольник;
• к любой точке тела применим принцип сохранения момента.
Статическое равновесие может быть безразличным, устойчивым или неустойчивым в зависимости от того, как ведет себя тело при смещении: остается ли оно на новом месте (безразличное), возвращается в положение прежнего равновесия (устойчивое) или смещается дальше (неустойчивое). Такое тело, как высокое транспортное средство, при большом наклоне упадет. Это случится, когда проекция центра тяжести точки, через которую проходит равнодействующая сил тяжести, сместится за пределы основания колеса.
См. также статьи «Векторы», «Сила и движение».
РАДИОАКТИВНОСТЬ 1 — РАДИОАКТИВНЫЙ РАСПАД
Радиоактивный изотоп распадается в результате одного из следующих процессов трансформации.
• α-излучение наблюдается, когда большие нестабильные ядра испускают два протона и два нейтрона в виде единой частицы, называемой α-частицей:
AZX —> 42α + A-4Z-2Y
• β-излучение наблюдается, когда нейтрон ядра с избытком нейтронов превращается в протон:
AZX —> 01β + AZ+1Y
• γ-излучение наблюдается, когда γ-фотон испускается из ядра с избытком энергии, который возникает после испускания ядром α- или β-частицы.
Теория радиоактивного распада основана на предположении случайности этого процесса, и вероятность того, что ядро распадется в промежуток времени Δt, пропорциональна Δt. Отсюда:
dN/dT = — λN
где λ — постоянная распада. При преобразовании уравнения получаем N = N0e-λt, где N0 — начальное количество атомов.
Активностью радиоактивного изотопа называется количество ядер, распадающихся в секунду. Отсюда активность
A = dN/dT,
где N — количество оставшихся радиоактивных ядер. Поскольку А — λN, активность А радиоактивного изотопа уменьшается экспоненциально, в соответствии с уравнением А = А0e-λt, где А0 — начальная активность.
Периодом полураспада изотопа называется время, требующееся для сокращения количества ядер изотопа на 50 %. Оно равно времени, за которое активность также уменьшается на 50 %. Так как после первого периода полураспада N = 0,5N0, то 0,5N0 = N0e-λt, что дает λТ1/2 = 1n2.
См. также статьи «Радиоактивность 2», «Ядерная модель атома».
РАДИОАКТИВНОСТЬ 2 — СВОЙСТВА α-, β- и γ- ИЗЛУЧЕНИЯ
Распространение при атмосферном давлении:
α-излучение; α-частицы, испускаемые определенным изотопом, имеют одну и ту же кинетическую энергию, которая отличается от энергии α-частиц других изотопов. Поэтому расстояние, на которое распространяются а-частицы, легко определить; оно составляет до 10 см.
β-излучение; β-частицы, испускаемые определенным изотопом, обладают широким спектром кинетической энергии вплоть до максимума, определяемого этим изотопом. Расстояние, на какое они распространяются, бывает разным в пределах приблизительно 1 м.
γ-излучение; γ-фотоны распространяются из точечного источника во все стороны и почти не взаимодействуют с молекулами воздуха. Расстояние, на которое они распространяются, безгранично, хотя интенсивность у-излучения из точечного источника подчиняется закону обратных квадратов, так как они распространяются во все стороны равномерно и без поглощения.
Поглощение веществом:
α-излучение; α-частицы поглощаются бумагой, тонким

