- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Алхимия человеческого духа - Крайон
Шрифт:
Интервал:
Закладка:
Другой способ получить величину? — вычислить ее при помощи теории чисел («матери» всей мате-матики). Применяя последовательный ряд вычислений, мы аппроксимировали величину? с невероятным количеством знаков после десятичной запятой. При помощи теории чисел мы провозгласили доказанным, что? «является иррациональным и трансцендентным числом», т.е. что оно «представляет собой бесконеч-ный ряд неповторяющихся чисел». Но мы уверены, что с точки зрения этой логики априорные допущения фундаментальной теории чисел истинны. По сути дела, мы говорим, что? «иррационально и трансцен-дентно», потому что «к любому числу всегда можно прибавить единицу».
Это дает вам небольшое введение в положение дел в современной математике. Но даже за самыми непостижимыми заявлениями, которые раздаются с высот математического Олимпа, лежат некоторые очень простые принципы, которые до сих пор так и остаются неразрешенными и исчезновения которых желали бы многие. Таким образом, современные математики стоят перед выбором: сказать, что «абсолют-ной истины не существует», или утверждать, что «для того, чтобы математика была жизнеспособной, необ-ходимо лишь, чтобы она была логически самодостаточной», или, когда не проходит и это, — заявить, что «математика — как шахматы: правила менять нельзя». Это их священные мантры, которые они самозабвен-но твердят всякий раз, когда сталкиваются с противоречиями. Является ли наша математика ошибочной по своему существу? Полагаю, что да. Многие математики втайне считают, что она ошибочна. Многие при-писывают некую «неизвестную ошибку» тому или иному разделу устоявшейся теории. Намного меньше высказывающих мнение о том, что ошибку можно найти в пренебрежении рыцарей картезианского ордена к предостережению Евклида, высказанному им с самого начала по поводу изучения абсолютных величин (книги 6?13). Думаю, я одинок в своем утверждении, что ошибка еще в древнейшие времена вкралась в ма-тематические концепции пифагорейцев, которые (хотя это и отрицают) в ходу и по сей день: в частности, в предположении «к любому числу всегда можно прибавить единицу».
К любому числу всегда можно прибавить единицу
Пифагорейцы были группой последователей учителя по имени Пифагор. Они были первыми, кто ис-кал «научно обоснованную теорию чисел». Этим они хотели изгнать все человеческие предрассудки из теории чисел и измерить глубины Вселенной в терминах самой Вселенной. Это им также почти удалось. Если бы у них было представление о нуле и они умели бы складывать числа в столбик (это присутствует в западной математике только последние 600 лет), то смогли бы вывести теорию чисел, в которой числа в действительности отражали бы то, что существует во Вселенной.
Они решили, что числа являются относительными приращениями измерения и что это применимо ко Вселенной. Поскольку Вселенная является «суммой всего познаваемого», она была принята за «великое Одно», или «Единство». Видимую множественность проявлений природы (и то, что как вы, так и я суще-ствуем независимо друг от друга) они назвали «способностью единства порождать многообразие» — Диа-дой. Две эти концепции бытуют у нас и сегодня. Их «диадическое действие» — это наше «возведение в квадрат» (теперь вы знаете, откуда происходит возведение в квадрат). О вышеперечисленном записи древ-них говорят очень ясно. Однако потом начинается неясность. Пифагорейцы делают резкий переход к логи-ке и добавляют предположение: «к любому числу всегда можно прибавить единицу». Почему? Потому что они не смогли запустить свой генератор Единства/Диады. Они «перескочили» к самоочевидности того, что 1 + 1 = 2, 2 + 1 = 3, и т.д., основываясь на общих наблюдениях. И это, в свою очередь, является единст-венным подтверждением существования бесконечности.
Поскольку единство является суммой своих частей, то наш измерительный инструмент (числа) дол-жен, в своих наименьших частях, быть откалиброван по целому. Не важно, на скольких именно единицах мы остановимся, важно, чтобы они были «откалиброваны по единству». Именно здесь и возникает идея об основании системы счисления. Она в высшей степени произвольна. Поскольку мы пытаемся измерить нечто, то удобно сделать эти единицы «единообразными». К чему без надобности усложнять положение вещей? Наши пальцы — вот «счетчик, который всегда под рукой»; почему бы не использовать их?
Важно заметить: тот факт, что наша система счисления является произвольной, указывает на то, что и изучение абсолютных величин является наукой произвольной. Со стороны пифагорейцев было ошибкой (которая присутствует и до сих пор) утверждать, что числа — это «мать всей математики». Каким образом может нечто произвольное (арифметика) быть «матерью» геометрии, если геометрия — это универсальная константа (круг остается кругом независимо от того, какие числа используются для того, чтобы его опи-сать)? Поэтому разве не парадоксально, что современные математики относятся к нечисловой геометрии чуть ли не с пренебрежением?
В таком случае, «наука о числах» должна выводиться из геометрических констант, а не наоборот, как у нас. Это и было главным в искусстве Евклида. Он сделал так, что создавалась видимость того, что между дугой и прямой линией существует равнозначность. Он замалчивал жизненно важную информацию о ду-гах, членил геометрически единые феномены (т.е. во всех треугольниках делил пополам стороны и углы), добавлял ложные выводы к постулатам, общим понятиям и определениям и не доводил до логического за-вершения свои теоремы — и я могу доказать, что все это действительно так. Он делал это последовательно и преднамеренно, чтобы «спасти греческую математику». Он прилагал удивительные усилия, и современные математические круги до сих пор еще не до конца их поняли, поскольку они заблудились в дебрях схола-стического истолкования его трудов.
Но вернемся к числам. Эти «единицы» (пальцы) являются «наименьшими неразложимыми отраже-ниями единства». То есть каждая единица являет собой целое, обладая всеми качествами изначальной це-лостности единства. Поскольку эти единицы являются «отражениями единства», то можно сказать: «Хоро-шо, значит, сами эти единицы можно при помощи той же операции разложить на более простые единицы… И где же здесь „неразложимость“? Если продолжить деление единиц, получается „универсальная линей-ка“. Если у меня есть линейка, положим, длиной в ярд, то в этом ярде у меня будет 36 дюймов. Если я захо-чу, то, руководствуясь той же логикой, я могу эти дюймы делить и дальше, на более мелкие части. Вот по-чему единицы являются отражением единства».
То, что у нас в действительности имеется сейчас, — это великое «единое» (единство) и меньшее «единое» (единица). Каким же образом их откалибровать, чтобы они согласовывались в рамках самой сис-темы? Этот вопрос и загнал в тупик пифагорейцев, остается он неразрешенным и сегодня. Мы не смогли откалибровать единицу по единству (поэтому пренебрегли им). И именно здесь в игру вступает «диадиче-ское действие» (возведение в квадрат).
Если бы я решил воспользоваться количеством своих пальцев в качестве основания для системы счисления (десятичной системы), каждый палец я обозначил бы черточкой, вот так:
11111 11111.Применяя к этому «диадическое действие» (возведение в квадрат), я получаю следующее:
11111111112 = 1234567900987654321.Заметьте, в возрастающей последовательности чисел отсутствует 8. Как такое может быть? Это что, чистая случайность? Сколько ни производи вычислений, эта выпавшая в восходящей последовательности восьмерка так и не появится в качестве члена ряда! Далее видим поразительный пример законченной сим-метрии, подтверждающий то, что это именно «то, чего хочет Вселенная». Число, обратно пропорциональ-ное 8, — это 125 (целые числа, обозначающие единство, диаду и среднее целочисленное от основания деся-тичного счисления).
Навскидку можно привести следующие примеры, вытекающие из этой симметрии:
123456790? 8 = 98765432;
1 / 0,1111111111 = 9;
1 / 0,11111111112 = 92 = 81;
/ 2,2222222222 =;
1 / 0,987654321 = 1,0125;
0,0987654321 / 8 = 0,01234567901234… = 1 / 92.Опять-таки, нигде в интегральной математике (которой даже мы не можем избежать) вы не найдете пропавшей восьмерки в восходящей последовательности. Она просто не появляется! Если вы выставите эту цифру, то навяжете «неестественные» для этого ряда условия и сразу же получите асимметричность, как например:
= 11111,11106!
Математика единства «авторитетно» заявляет, что ничто не восходит, за исключением того, что сна-чала низошло. Это иерархия чисел, которая нисходит из этого единства. Последовательности нельзя рас-сматривать так, как если бы между ними не было никакой разницы. Этот феномен подтверждается в гео-метрии, равно как и в свойствах треугольников, что является, и я могу доказать это на примерах, фунда-ментальным условием математики (у Евклида это одно из самых искусно затемненных мест в случаях с описанными и вписанными в окружность треугольниками).

