- Любовные романы
- Фантастика и фэнтези
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Естествознание - Александр Петелин
Шрифт:
Интервал:
Закладка:
Постоянное ускорение определяется как
где v – v0 – приращение скорости за время t.
Мгновенное ускорение:
Путь при равноускоренном движении:
где v0 – скорость тела в начальный момент времени.
На практике нужно знать не только значение, но и направление скорости в пространстве, например, чтобы описать движение (траекторию) автомобиля, самолета или космического корабля. Любая физическая величина, которая не будет полностью определена, если задать только ее значение и не указать, в какую сторону она направлена, является вектором.
Скорость – это вектор. Если разложить вектор скорости v при движении тела в пространстве по осям декартовой системы координат, то мы получим ее составляющие vx, v, vz. Они связаны с полной скоростью v соотношением
Следует отметить, что векторную природу имеет ускорение a, а также многие величины, которые мы будем использовать в дальнейшем изложении: сила F, импульс p и другие. Во всех случаях векторные величины отмечаются стрелкой «->», помещенной над буквенным обозначением величины. Значение самой величины (ее абсолютная величина) обозначается просто буквой, например, a – значение ускорения.
Рассмотрим равномерное движение тела по окружности со скоростью v. При этом его ускорение, оставаясь перпендикулярным скорости в любой момент времени, направлено к центру окружности. Можно показать, что значение ускорения тела ac, которое в данном случае называется центростремительным, определяется по формуле
где R – радиус окружности. Следует отметить, что центростремительное ускорение меняет только направление вектора скорости, не влияя на его величину; ускорение ac направлено по радиусу окружности к ее центру.
Пример. Определение первой космической скорости.
Любое тело, движущееся по круговой орбите вокруг Земли, должно иметь ускорение ac = v2/R, направленное к центру нашей планеты.
Поскольку на тело в этом случае действует только сила земного притяжения (т. е. сила тяжести), то можно записать
где gc – ускорение свободного падения – 9,8 м/с2.
Тогда vc = qR.
Если считать, что R≈ 6500 км (расстояние до центра Земли), то вычисление первой космической скорости дает значение vc=8 км/c. Если разделить длину орбиты на скорость спутника, то получим время одного оборота спутника вокруг Земли. Длина орбиты низколетящего спутника близка к длине экватора Земли t = 40 000 км/8 км/c = 5000 c = 83 мин
Для того чтобы вывести ракету за пределы действия земного притяжения, т. е. направить ее к другим планетам, необходимо сообщить ей начальную скорость 11,2 км/с, которая носит название второй космической скорости.
Впервые эти расчеты провел Исаак Ньютон еще примерно в 1660 г.
Динамика занимается изучением общих законов взаимодействия материальных тел. Широкий класс явлений удается описать или объяснить на основе законов движения И. Ньютона.
Первый закон Ньютона
Будучи предоставлено самому себе (при отсутствии результирующей внешней силы), тело сохраняет состояние покоя или равномерного движения с равным нулю ускорением.
В математической форме это утверждение имеет вид: a = 0, если F = 0 (F – результирующая внешняя сила).
Второй закон Ньютона
Действующая на тело результирующая сила равна произведению массы тела на его ускорение:
Третий закон Ньютона
При любом взаимодействии двух тел сила, с которой первое тело воздействует на второе, равна по величине и направлена противоположно силе, с которой второе тело воздействует на первое:
Все три закона движения справедливы только при условии, что наблюдатель находится в инерциальной системе отсчета. Определение Ньютона для инерциальной системы отсчета: это любая система, которая покоится или движется равномерно и прямолинейно по отношению к неподвижным звездам.
Определение: импульсом (количеством движения) тела p называется произведение массы тела на его скорость:
Закон сохранения импульса
В отсутствие внешних сил сумма импульсов системы частиц (тел) остается неизменной.
При столкновении двух частиц, имеющих массы mA и mB, закон сохранения импульса записывается так:
или
где vA и vB – скорости частиц до соударения, а v'A и v'B – их скорости после соударения.
Другой вариант: две частицы первоначально покоятся, т. е. vA = vB = 0. Затем между ними происходит взаимодействие (например, из одной частицы выскакивает упругая пружина и расталкивает частицы). Закон сохранения импульса показывает, что после взаимодействия мы должны получить
где знак «минус» означает, что векторы параллельны, но направлены в противоположные стороны. Отсюда следует, что
где v'A и vB – абсолютные величины векторов скорости после взаимодействия.
Тогда любую неизвестную массу mB можно найти, приведя ее во взаимодействие с известной массой mA с помощью пружины, находящейся между ними, и измеряя отношение скоростей после взаимодействия. Масса частицы (тела), определенная таким образом, называется инертной массой. Закон сохранения импульса позволяет определить инертную массу тела.
Закон всемирного тяготения
Ньютоновский закон всемирного тяготения для силы, действующей между двумя телами с массами m1 и m2, записывается следующим образом:
где r—расстояние между телами, G = 6,67 × 10-11 Н × м2/кг2 – гравитационная постоянная (1 Н = 1 ньютон – это величина силы, с которой Земля притягивает тело массой 0,1 кг, находящееся на ее поверхности).
Гравитационная постоянная является мировой константой, ее определение возможно при проведении прямых лабораторных опытов по измерению силы гравитационного притяжения двух известных масс. Впервые опыт по определению G был поставлен Г. Кавендишем в 1797 г. Зная величину G, можно определить массу Земли, массы других планет Солнечной системы, массу Солнца. Для определения массы Солнца необходимо знать расстояние от Земли до Солнца и время, за которое Земля совершает один оборот вокруг Солнца.
Следствия закона всемирного тяготения
Еще до того как Ньютон постулировал закон всемирного тяготения, И. Кеплер, анализируя движения планет Солнечной системы, предложил три простых закона, очень точно описывающих эти движения не только для всех планет, но и для их спутников.
Первый закон Кеплера
Все планеты обращаются по эллиптическим орбитам, в фокусе которых находится Солнце.
Эллипс обладает несколькими характерными геометрическими свойствами. Это замкнутая кривая линия, сумма расстояний от любой точки которой до двух фиксированных точек (фокусов) остается постоянной. Другое свойство: луч света или звуковая волна (прямые лучи), вышедшие из одного фокуса эллипса, обязательно попадают в результате отражения во второй фокус. На этом принципе основано устройство «шепчущей галереи», какую иногда можно обнаружить в музеях – у такой галереи стены имеют форму эллипса. Два человека, стоящих в различных фокусах, расположенных даже на большом расстоянии, могут свободно разговаривать друг с другом шепотом, причем остальные посетители не услышат ни одного слова.
Второй закон Кеплера
Прямая, соединяющая Солнце и какую-либо планету, при вращении планеты вокруг Солнца за равные промежутки времени описывает одинаковую площадь.