Журнал «Вокруг Света» №01 за 2007 год - Вокруг Света
Шрифт:
Интервал:
Закладка:
Южный штат Виктория — один из самых населенных, но его «глубинка», куда ни глянь, сплошь залита бесконечными озерами и болотами
Но самое живописное место Австралии, по всеобщему признанию, — Северная Территория с ее девственной природой: водопадами и непроходимыми манграми, болотами и 7-метровыми крокодилами. Здесь, в Национальном парке Какаду , показывают наиболее интересные в стране рисунки аборигенов.
Процветание Австралии, входящей в двадцатку богатейших стран мира, зависит во многом от природных ресурсов и полезных ископаемых. Благодаря деньгам и обилию земли австралийцы живут гораздо вольготнее европейцев — в больших собственных домах, не всегда запираемых на ночь. В своих городах и зданиях они воплощают все лучшие достижения современной цивилизации, вырабатывая в то же время своеобразный, ни с чем не сравнимый архитектурный стиль. Но люди с их городами, машинами и домами — явление в Австралии по-прежнему редкое. Двести лет — срок отнюдь не достаточный, чтобы заселить и освоить даже самый маленький материк.
Антон Богданович
Космический «фуникулер»
Идея проложить дорогу в небо в буквальном смысле этого слова выглядит столь романтично, что многие, впервые услышав о космическом лифте, думают, что это проделки фантастов. Собственно, и среди экспертов (особенно материаловедов) пока нет однозначной оценки осуществимости подобных проектов — по крайней мере в ближайшие десятилетия. И тем не менее американское космическое агентство NASA тратит немалые деньги на разработки в этом направлении. Проводятся даже специальные соревнования «канатов» и «фуникулеров», призванные выявить исследовательские группы, которым имеет смысл в дальнейшем выделять субсидии.
Привычные мечты о неограниченной космической экспансии человечества столкнулись в последние годы с кризисом (или, точнее сказать, стагнацией) в технологиях доставки в космос грузов и людей. Никак не удается совместить жесткие требования безопасности полетов с экономической целесообразностью. Самые горячие головы даже требуют вовсе отказаться от пилотируемых полетов, поскольку они-де неоправданно дороги и сопровождаются неизбежными человеческими жертвами. Единственной реалистичной альтернативой ракетной технике из всех придуманных за последние полвека является космический лифт — мост или канат, протянутый с поверхности Земли на орбиту.
Спутник на низкой орбите может двигаться со скоростью около 8 км/с и делать один виток вокруг Земли за 1,5 часа. Но чем выше мы поднимаемся над Землей, тем слабее гравитация, тем медленнее движение спутника, тем больше требуется времени на то, чтобы он облетел всю планету. На высоте 35 786 км над экватором период обращения спутника сравнивается с периодом вращения Земли — это так называемая геостационарная орбита. Выведенное на такую орбиту тело неподвижно зависает над одной точкой на земной поверхности. Если протянуть к нему очень длинный и прочный канат, то можно будет взбираться до неба и спускаться назад без использования дорогостоящих и опасных ракет.
Конечно, сам вес этой «привязи» будет тянуть такую конструкцию к Земле. Поэтому его необходимо компенсировать, пробросив канат еще дальше в космос и закрепив на дальнем конце противовес. Обращаясь вокруг Земли, как камень, вложенный в пращу, он будет обеспечивать устойчивое натяжение всей связке.
У Земли основание каната можно прикрепить, например, к очень высокой башне или к плавучей океанской платформе. У каждого такого варианта есть свои преимущества: башня может спасти от изменчивости неспокойных нижних слоев атмосферы, а океанская платформа позволит совершать маневры уклонения, если ураган или гроза будут создавать опасность для нашей привязи. Но крепление троса в нижней части в любом случае не должно быть жестким, чтобы он не лопнул при возникновении колебаний.
Так в NASA представляют космический лифт конца XXI века. Вид на пересадочную станцию на геостационарной орбите
Трос толщиной со вселенную
С самого появления идеи космического лифта было ясно, что имеющиеся в распоряжении человека материалы не выдержат безумных нагрузок, которые испытает «паутинка», спущенная из космоса. Согласно полученным уравнениям, толщина оптимальной привязи по мере удаления от Земли сперва экспоненциально растет, затем на высоте двух-трех земных радиусов, по мере того, как силу земного притяжения компенсирует центробежная сила, рост толщины замедляется, и наконец вблизи геостационарной орбиты толщина становится постоянной.
Ключевой вопрос технологии космического лифта: насколько толстым станет канат в верхней точке. Расчеты показывают, что его толщина фантастически сильно зависит от свойств материала — его прочности и плотности. Если использовать обычную сталь (плотность 7,8 г/см3 , усилие на разрыв 2 гигапаскаля, что соответствует давлению 20 тысяч атмосфер), то расчетная толщина превысит видимые размеры Вселенной, что попросту лишает расчет физического смысла. Даже из лучших марок стали (5 ГПа) построить космический лифт совершенно нереально. Но если в несколько раз поднять прочность и снизить плотность материала, результат меняется кардинально.
Например, с уже известными человечеству материалами — паучьим «шелком» (1,3 ГПа при плотности 1,2 г/см3), углеродистым стекловолокном (2—5 ГПа при 1,9 г/см3), кевларом (3,6 ГПа, 1,4 г/см3) — толщина троса в верхней части получается от сотен километров до всего десятка метров. Впрочем, с инженерной и экономической точек зрения подобный проект все равно малореален. Собственно, именно отсутствие подходящих материалов и привело к тому, что на долгое время космические лифты обосновались исключительно на страницах фантастической литературы.
Углеродные нанотрубки под электронным микроскопом
Второе дыхание идея космического лифта получила с появлением в 1991 году принципиально новых материалов — углеродных нанотрубок. Это протяженные цилиндрические структуры диаметром в считанные нанометры. Их можно описать как свернутые в тонкую трубочку плоские листы графита мономолекулярной толщины (хотя в реальности нанотрубки образуются иначе). В плоскости графитового слоя атомы углерода соединены в характерную гексагональную (шестиугольную) решетку, обладающую высокой прочностью, которую унаследовали и нанотрубки. По своей устойчивости на разрыв они более чем на порядок превосходят сталь и при этом имеют в шесть раз меньшую плотность. Нитка миллиметрового диаметра, состоящая из нанотрубок, теоретически могла бы выдержать груз в 60 тонн (усилие на разрыв 60 ГПа) и даже больше — самая оптимистичная приводимая в специальной литературе цифра составляет 300 ГПа.
Загвоздка, однако, в том, что сегодня никто не умеет изготавливать из нанотрубок нитки. Трубки, которые удается получить, имеют длину, измеряемую микронами, в лучшем случае — миллиметрами, и нет никаких гарантий, что параметры нитей из нанотрубок действительно когда-нибудь достигнут теоретических показателей. Во-первых, даже самая лучшая нить будет, конечно же, заметно менее прочной, чем отдельные ее волокна. Во-вторых, на прочность трубок самым плачевным образом влияют дефекты кристаллической решетки. Согласно мнению некоторых ученых, именно эти неизбежные дефекты станут непреодолимым препятствием для космического лифта. Ведь даже если в идеальных условиях мы и научимся изготавливать безупречные волокна, то повреждения от микрометеоритов и космических лучей, эрозия под действием атмосферного кислорода могут свести все усилия на нет.
Если мы попробуем подставить в формулы параметры углеродных нанотрубок, то верхняя часть троса получается всего на 20—50% толще нижней. Это значит, что трос в форме ленты толщиной с лист бумаги даже в самом широком месте не будет превосходить нескольких десятков сантиметров.
Подъемник, построенный командой Мичиганского университета (справа), впервые поднялся на высоту 60 метров, получая энергию только от солнечных батарей. На это ушло 6 минут 40 секунд при зачетном времени 1 минута. Самым быстрым стал подъемник, созданный в Университете провинции Саскачеван (Канада). Он лишь на пару секунд не уложился в отведенный норматив. На снимке внизу: последние приготовления перед запуском канадского прототипа космического лифта. Обратите внимание, что для подъема используется не трос, а тонкая широкая лента. Это избавляет от проблем с ориентацией аппарата
Подъем на лазерном луче