Аксиомы биологии - Медников Борис Михайлович
Шрифт:
Интервал:
Закладка:
Можно сделать вывод, что «чужая упорядоченность» организму не нужна, он изо всех сил, отчаянно борется с ней. Сохранить пересаженный орган можно только, подавив защитные иммунные системы образования антител. Но тогда пациент окажется беззащитным против любой инфекции и в конце концов погибнет от нее, как это случилось с Вашканским.
Это самый эффектный пример, но известны и другие случаи, когда организмы не приемлют «чужого порядка». Общеизвестны группы крови, здесь система проста, и, определив группу, практически во всех случаях избежать распада эритроцитов. Более того, человеку можно переливать кровь шимпанзе соответствующей группы. Но изредка встречаются люди с такими уникальными наборами факторов крови, что ничья другая им не годится.
Инсулин – единственное эффективное средство против диабета отличается сравнительно малой видоспецифичностью, поэтому для лечения диабетиков можно использовать этот белок, выделенный из поджелудочных желез крупного рогатого скота. А вот гормон роста – соматотропин – видоспецифичен. Для лечения карликового роста у человека нужен именно человеческий соматотропин, который выделяется из гипофиза умерших людей.
Рис. 3. На этом рисунке изображена схема молекулы инсулина. С сокращенными названиями, слагающих ее аминокислот мы познакомимся позже. Для нас сейчас важно другое: инсулин один из наименее специфичных белков (и это великое благо для страдающих диабетом; для их лечения можно применять инсулин крупного рогатого скота). Тем не менее почти каждый вид характеризуется некоторыми различиями в последовательностях. Так, в цепи А между шестым и одиннадцатым остатками цистеина, образующими дисульфидные мостики, последовательность аминокислот у быка, барана, лошади и свиньи неодинакова. Лишь у свиньи и кита она сходна, но они различаются по другим частям молекулы. Итак, специфичность структуры прослеживается и на молекулярном уровне.
Казалось бы, у низших организмов отвращение к «чужому порядку» меньше. Действительно, у рыб и амфибий удаются пересадки органов между особями разных видов, и бычий соматотропин может стимулировать рост форели. Однако все это искусственные, создаваемые экспериментатором положения. Еще и еще раз повторю, что животные, питаясь другими животными или растениями, начинают с разрушения чужой упорядоченности. Пища в их желудках и кишечниках расщепляется специальными ферментами до простых веществ, не обладающих видоспецифичностью. Так, белки расщепляются до аминокислот, сложные углеводы, такие, как крахмал и гликоген, – до моносахаридов, нуклеиновые кислоты – до нуклеотидов. По строению, например, аминокислоты глицина или фенилаланина невозможно сказать, получена ли она из белков бычьего мяса, гороха или же синтезирована химиком искусственно.
Из этих элементарных кирпичиков жизни организмы строят лишь им присущие белки. Каждый организм характерен именно неповторимой, присущей только ему комбинацией белковых молекул. А уже на этой базе возникает комплекс всех признаков организма – на уровне клеток, тканей и органов.
У растений это выражено еще более резко. Вода, набор питательных солей, углекислый газ и свет при этом комплексе одинаковых факторов из одного семени вырастает роза, из другого – крапива, каждое растение с присущим ему набором свойств. Со своей упорядоченностью.
Итак, организмы берут извне не упорядоченность, а энергию: растения в виде квантов света, животные в виде малоокисленных соединений, которые можно сжечь в процессе дыхания. За счет этой энергии они строят свою «доморощенную» упорядоченность, пренебрегая чужой.
Вот почему в определении жизни должно был воспроизведение специфической структуры.
И первая аксиома биологии должна дать условия, при которых воспроизведение этой специфической структуры возможно.
Формулировка первой аксиомы затянулась более чем на две тысячи лет. Именно на протяжении этого периода люди пытались понять, каким образом, например, из куриного яйца – гомогенной массы желтка и белка – возникает цыпленок с головой, ногами, крыльями. Откуда берется из поколения в поколение упорядоченность системы «цыпленок», да и упорядоченность всех организмов на Земле? Вопрос оказался из категории «проклятых» настолько, что смог быть разрешенным лишь в нашем столетии.
Итак, переходим к первой аксиоме. Рассмотрим, как были накоплены факты, позволившие ее сформулировать.
Аксиома первая
Итак, в предыдущей главе мы пришли к выводу, что один из главных признаков живого – организация, структура. Аминокислоты в белках, внутриклеточные элементы, клетки в тканях и ткани в органах образуют упорядоченные структуры. Но все эти структуры, как уже упоминалось, возникают заново в каждом новом поколении, хотя бы цыпленок из однородной массы белка и желтка. Как это происходит?
Преформизм. Более двух тысяч лет люди размышляли над этим вопросом. Не зная второго начала термодинамики, они все же интуитивно чувствовали, что самопроизвольное возникновение порядка из беспорядка, структуры из бесструктурной массы – чудо. И первая из гипотез, объясняющая развитие, попыталась это чудо как-то обойти.
Великий врач, основоположник медицины Гиппократ предположил, что цыпленок в яйце уже содержится в готовом виде в процессе насиживания идет только рост, увеличение размеров. Вот что он писал: «Все члены отделяются друг от друга одновременно и таким же образом растут. Ни один не возникает раньше или позже другого». Сходные взгляды высказывал философ Анаксагор и великий римский мыслитель Сенека («в семени содержатся все будущие части человека»). Пышным цветом эта гипотеза расцвела в XVII и XVIII веках и получила название преформизма, или же теории преформации. Вот типичное для того времени мнение Н. Мальбранша: «В яйцах лягушек легко можно распознать лягушек, но также мы найдем других животных в их зародышах, когда станем настолько опытны и искусны, чтобы открыть их».
Преформисты лишь спорили: где находятся эти будущие зародыши в мужских или женских половых клетках? Сторонники первого направления считали, что яйцеклетки лишь питательная среда для роста сперматозоидов (их тогда называли анималькулями – зверьками, живущими в семенной жидкости). По этому защитников первой концепции назвали анималькулистами. По-видимому, первым из анималькулистов был изобретатель простого микроскопа А. Левенгук (который, кстати, первым и увидел сперматозоиды). К той же точке зрения склонялся и великий философ Лейбниц.
Рис. 4. Вверху: примерно такими видел сперматозоиды человека Левенгук. Внизу карикатура Хартсекера на воззрения той эпохи.
Более многочисленной была когорта овистов (от латинского ovum – «яйцо»), помещавших зародыш в яйцеклетке. К ней относились такие известные натуралисты, как Галлер и Бонне, Валиснери и Сваммердам, Рюйш и Спалланцани. Какие доводы они приводили в защиту своей точки зрения?
Ян Сваммердам, блестящий анатом, один из первых анатомов насекомых, обнаруживал в куколках «готовых» бабочек, со сложенными крыльями, но во всех деталях соответствующих взрослым. Не менее эффектное на первый взгляд доказательство обнаружил Ш. Бонне, изучавший жизнь тлей. Он открыл у них партеногенез: самка тли рождала живых детенышей, тоже самок, которые через несколько дней достигали нормальных размеров и сами без оплодотворения становились родоначальниками нового поколения.
Еще более убедительный пример – колониальное жгутиковое вольвокс. Многие читатели, наверное, видели колонии этой зеленой водоросли – крупные, до двух миллиметров в диаметре слизистые шарики, состоящие из одного слоя клеток. В слизистом содержимом плавают дочерние колонии, а внутри дочерних – колонии третьего поколения. Ссылаясь на вольвокса, А. Галлер с торжеством заключал: «Отсюда следует, что, если яичник может содержать много поколений, нет ничего нелепого в том, что он содержит их все».