- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Радиоисследования планет с космических аппаратов - Николай Крупенио
Шрифт:
Интервал:
Закладка:
Для разделения на наземном пункте прямого и отраженного сигналов используют либо их частотные различия за счет эффекта Доплера, либо временные различия их поступления на вход приемного устройства, так как отраженный сигнал всегда запаздывает относительно прямого. После разделения сигналов производится сопоставление их мощностей и затем уже анализ спектра отраженного сигнала.
Обычно бистатическая радиолокация проводится с помощью бортового передатчика, излучающего немодулированный сигнал, с последующим спектральным анализом отраженного сигнала.
Для повышения разрешения на поверхности в экспериментах по бистатической радиолокации (так же, как и в моностатической радиолокации) используется модуляция сигнала передатчика. Модуляция может быть либо импульсной, либо частотной.
В методе с импульсной модуляцией для коротких по длительности импульсов размер зоны отражения на поверхности будет зависеть от длительности импульса и угла падения радиоволн. Так, при длительности импульса в 10 мкс и угле падения Θ = 60° ширина зоны облучения поверхности составит 7,3 км. При сокращении длительности импульса в 10 раз соответственно сократится и зона облучения.
При использовании частотной модуляции (обычно с периодическим линейным изменением частоты во времени) разрешение по дальности (в направлении падения) будет зависеть от диапазона изменения частоты передатчика. Чем в большем диапазоне изменяется частота передатчика, тем больше может быть получено разрешение по дальности.
Использованием модуляции бортового передатчика с одновременным анализом на наземном пункте приема мгновенных спектров отраженных сигналов позволяет осуществить бистатическое радиолокационное картографирование поверхности, которое напоминает частотно-временное картографирование, проводимое при наземных радиолокационных исследованиях Луны и планет. Однако при прочих равных условиях проведение бистатической радиолокации с модулированным сигналом требует наличия передатчика большей мощности, чем при радиолокации с немодулированным сигналом. Поэтому эти виды бистатической радиолокации только начинают находить применение в планетных исследованиях.
РЕЗУЛЬТАТЫ РАДИОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ
К настоящему времени космические аппараты побывали на поверхности Луны, Марса и Венеры, исследовали с пролетной траектории или с орбиты искусственных спутников Луну, Венеру, Меркурий, Марс и Юпитер. С помощью большинства этих космических аппаратов проводились и радиофизические эксперименты.
Рассмотрим некоторые их результаты.
Исследования Луны
Из-за своей относительной близости к Земле Луна наиболее полно была изучена как наземными, так и космическими средствами, в том числе и радиофизическими методами.
Одним из первых радиофизических методов при исследовании Луны стала применяться радиолокация. На рис. 6 представлены результаты определения характеристик отражения грунтом поверхностного слоя Луны, полученные с помощью американских станций «Сервейер-6 и -7». Их сопоставление показывает, что горный (материковый) район в окрестностях лучевой системы кратера Тихо («Сервейер-7») создает значительно более широкую диаграмму обратного рассеяния, что соответствует большей степени шероховатости рельефа по сравнению с рельефом морского района.
Рис. 6. Удельная эффективная площадь рассеяния Луны по данным: а) «Сервейера-6» и б) «Ссрвейера-7»
В табл. 1 приведены результаты обработок проведенных моностатических радиолокационных экспериментов. Данные этой таблицы, в частности, показывают, что в районах, исследованных группой ученых Института космических исследований АН СССР с помощью автоматических станций серии «Луна» (на длине волны 3 см), в слое толщиной до 50 см эффективная диэлектрическая проницаемость варьируется от 1,7 до 5,7, что соответствует плотности грунта ρ = 0,68 — 2,63 г/см3. Значения среднеквадратичных углов наклона в этих районах изменяются от 8,5 до 13,5°.
Измерения на более короткой длине волны (2,3 см), выполненные на АС серии «Сервейер» группой ученых Лаборатории реактивного движения, также подтвердили сильное изменение свойств поверхности и подповерхностного слоя в зависимости от района измерения.
Таблица 1
В табл. 1 также приведены результаты измерения характеристик отражения для двух районов лунной поверхности, выполненных с борта станции «Луна-19».
Измерения, проводившиеся на «Луне-19», отличались по методике от измерений, выполненных на других автоматических станциях серии «Луна», осуществивших посадку на поверхности Луны. На борту искусственного спутника Луны «Луна-19» был установлен радиовысотомер с антенной, которая могла поворачиваться относительно корпуса автоматической станции. Это позволило использовать «Луну-19» для измерения диаграммы обратного рассеяния локальных участков поверхности. В процессе полета антенна радиовысотомера разворачивалась в плоскости орбиты станций, что позволило для двух смежных участков трассы полета вблизи кратера Рюмкер исследовать характеристики отражения радиоволн поверхностью. Оказалось, что эти два близкорасположенных участка, лежащие по обе стороны от глубокого разлома, имеют отличающиеся характеристики — они различаются как по эффективной диэлектрической проницаемости, так и по значению среднеквадратичных углов наклон.
Подобный по методике эксперимент был затем также проведен на искусственном спутнике «Луна-22».
На большинстве автоматических станций, осуществивших посадку на лунную поверхность, были проведены измерения физико-механических параметров характеристик грунта. Среди этих параметров была определена и плотность грунта. Так как на этих же автоматических станциях на участке посадки обычно проводились и радиолокационные эксперименты, то это позволило сопоставить[4] данные измерения плотности грунта, определенной в одном районе различными методами (рис. 7).
При исследовании Луны нашли применение два контактных метода определения плотности грунта: метод измерения несущей способности и метод измерения коэффициента рассеяния γ-квантов или α-частиц. Первый основан па связи несущей способности с плотностью грунта. Второй — на связи интенсивности потока вторичного излучения грунта при его облучении γ-квантами или α-частицами с величиной плотности этого грунта. На Луне первый метод использовался на станциях «Луна-17» («Луноход-1»), «Луна-21» («Луноход-2»), «Сервейер-1, -3, -5, -6, -7», второй — на автоматических станциях «Луна-13» (γ-плотномер) и «Сервейер-7» (α-плотномер).
Рис. 7. Плотность грунта лунной поверхности по результатам, полученным одновременно механическими и радиолокационными методами с помощью станций «Луна» (заштрихованные треугольники) и «Сервейер» (кружочки)
Сопоставление данных по определению плотности грунта контактными и дистанционными методами позволило сделать ряд важных выводов. Эти методы измерений дали близкие результаты. Была определена поверхностная плотность лунного грунта (плотность первого сантиметра в глубину от поверхности), которая в среднем оказалась равной 1,2 г/см3. Эта величина соответствует плотности измельченного лунного грунта при его насыпании без уплотнения (при имитации лунных условий в земной лаборатории). В разных районах Луны величина поверхностной плотности колеблется от 0,6 до 3 г/см3.
В результате совместного анализа результатов контактных и дистанционных измерений плотности грунта было показано, что она экспоненциально возрастает с глубиной. Это позволило определить толщину переработанного метеоритной бомбардировкой верхнего покрова Луны. В разных районах величина такого слоя оказалась существенно различной, колеблясь от 40 см до 40 м (при среднем значении этой величины равной 5 м). Рис. 7. Плотность грунта лунной поверхности по результатам, полученным одновременно механическими и радиолокационными методами с помощью станций «Луна» (заштрихованные треугольники) и «Сервейер» (кружочки)
При полете почти всех космических аппаратов, выведенных на орбиту вокруг Луны, проводилась бистатическая радиолокация. При этом на космических аппаратах использовались различные методы модуляции и различные длины волн излучаемых сигналов, а также разные методики обработки принятых сигналов. Все эксперименты проводились по схеме, в которой передатчик размещался на борту искусственного спутника Луны (ИСЛ), а прием и обработка прямого и отраженного сигналов осуществлялись на наземном измерительном пункте.

