- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Разберись в Data Science. Как освоить науку о данных и научиться думать как эксперт - Алекс Дж. Гатман
Шрифт:
Интервал:
Закладка:
Хотя этот пример может показаться очевидным, регрессия к среднему имеет более широкие последствия для процесса рассуждения. Если вы не смотрите на все имеющиеся данные с высоты птичьего полета, некоторые наблюдения могут показаться экстремальными. В этом случае предвзятость может проявиться в том, что вы примете решение, основанное на этих экстремальных событиях, не принимая во внимание то, что независимо от ваших действий на горизонте находится более предсказуемое событие, близкое к истинному среднему значению.
Возьмем, к примеру, игрока Национальной футбольной лиги (NFL), который после выдающегося года оказался на обложке популярной видеоигры Madden NFL, но в следующем году показал гораздо менее впечатляющие результаты. Этот феномен получил название «проклятья Madden»[142]. Но мы называем это регрессией к среднему значению. Или представьте себе в целом благонадежного сотрудника, у которого выдался тяжелый год, в результате чего его работа получила плохие отзывы. Для него составляется план исправления, и в следующем году его производительность восстанавливается. Менеджер приписывает это улучшение своему мудрому руководству, однако показатели работника, скорее всего, в любом случае улучшилась бы из-за регрессии к среднему значению.
Регрессия к среднему призывает нас не верить выбросам. Ни удача, ни неудача не продлится вечно.
Парадокс Симпсона
Еще одно явление, на которое следует обратить внимание, – парадокс Симпсона. Это потенциально катастрофическая ловушка при работе с данными наблюдений (с которыми вам предстоит работать чаще всего). Парадокс Симпсона возникает в том случае, когда тенденция или связь между переменными меняется на противоположную после добавления третьей переменной. В связи с парадоксом Симпсона вам следует остерегаться двух ошибок: принятия корреляции за причинно-следственную связь и выявления неправильной корреляции.
Рассмотрим данные в табл. 13.1, взятые из исследования 1986 года, посвященного двум типам хирургических методов удаления камней в почках[143]. Обзор медицинских записей показал, что новая, минимально инвазивная процедура удаления камней в почках является более успешной (83 %) по сравнению с традиционной (78 %). Результаты были статистически значимыми и, по общему мнению, вполне убедительными.
Табл. 13.1. Показатели успеха хирургических процедур удаления камней из почек
К сожалению, в этих данных возник парадокс Симпсона. Дальнейший обзор данных показал, что при разбивке камней в почках по размерам, результат меняется на противоположный. Как оказалось, традиционная процедура отличалась высокими показателями успеха как у пациентов с небольшими камнями в почках (диаметром <2 см), так и у пациентов с большими камнями (диаметром ≥2 см). Эта разбивка показана в табл. 13.2.
Табл. 13.2. Парадокс Симпсона на примере показателей успеха хирургических процедур удаления камней из почек
Как это возможно? Дело в том, что новая процедура была опробована на множестве пациентов с небольшими камнями в почках (то есть на предположительно более легких случаях), в то время как традиционная процедура в основном использовалась для лечения пациентов с более крупными камнями в почках. Несмотря на то что традиционная процедура показала лучшие результаты при удалении небольших камней (93 %), новая процедура была выполнена гораздо большему количеству пациентов, а показатель ее успешности составил 87 %. Таким образом, общий показатель успеха новой процедуры тяготеет к 87 %. В табл. 13.2 мы видим, что общий показатель успешности традиционной процедуры (78 %) больше тяготеет к показателям успеха у пациентов с крупными камнями в почках (73 %). Новая процедура сработала хуже на этой группе, но она была выполнена слишком небольшому количеству пациентов, чтобы это повлияло на ее общий показатель успешности. Запутались? Это нормально. Именно поэтому данный феномен и называется парадоксом.
Чтобы снизить риски, связанные с парадоксом Симпсона, разделите наблюдения по группам случайным образом, чтобы исключить смешивание. Другими словами, соберите экспериментальные данные.
Предвзятость подтверждения
Такая ловушка, как предвзятость подтверждения, представляет потенциальную опасность для любого проекта по работе с данными. Ее суть заключается в такой интерпретации данных и результатов, которая подтверждает уже существующие убеждения; при этом противоречащие этим убеждениям доказательства отбрасываются.
В подобной предвзятости легко обвинить руководителей высшего звена, политиков и лиц, заинтересованных в результате деятельности бизнеса, – но признать это за собой гораздо труднее. Тем не менее для многих команд аналитиков предвзятость подтверждения – практически неотъемлемая часть образа жизни. Дело в том, что порой им приходится искать доказательства правильности шагов руководства, которые могут предприниматься еще до анализа достаточного количества данных. По крайней мере, часть работы этих команд направлена на формирование предвзятости подтверждения. Это не просто, но, как главный по данным, вы должны стремиться преодолеть эту предвзятость и сообщить о результатах максимально правдиво. В противном случае команда может использовать предвзятость подтверждения для обоснования решений руководства вместо того, чтобы анализировать все доступные решения, не подвергаясь давлению с его стороны.
Ловушка невозвратных затрат
Суть ловушки невозвратных затрат – желание продолжать работу над проектом, в который уже было вложено огромное количество времени, денег, ресурсов и усилий. В такой ситуации очень трудно отказаться от результатов, даже если вы понимаете, что:
– У вас нет нужных данных для реализации проекта.
– У вас нет подходящей технологии для реализации проекта.
– Исходное содержание проекта не охватывает его основополагающие достоинства.
Некоторые компании предпочли бы, чтобы вы предоставили хоть какие-то результаты, оправдывающие затраченное время и усилия. Подобное давление создает благодатную почву для формирования многих из перечисленных выше предвзятостей.
Алгоритмическая предвзятость
По мере автоматизации все большего количества решений с помощью машинного обучения мы все чаще сталкиваемся с так называемой алгоритмической предвзятостью[144], буквально встроенной в мир данных и вычислений. Хотя исследователи и организации лишь недавно начали внимательно изучать ее происхождение и последствия, такая предвзятость существовала в данных всегда. Часто она является продуктом статус-кво, и ее может быть трудно обнаружить до тех пор, пока этот статус-кво не будет подвергнут фундаментальному пересмотру. Однако, если вы будете осознанно подходить к своей работе, то сможете обнаружить эту предвзятость гораздо раньше.
Вспомните пример из предыдущих глав, в котором мы рассматривали данные о кандидатах на стажировку и пытались предсказать, получат ли они приглашение на собеседование. Если бы набор данных включал такую категориальную переменную, как пол, и исторически мужчины получали бы приглашение на интервью чаще, чем женщины, то каждый алгоритм выявлял бы эту взаимосвязь и чаще отдавал предпочтение соискателям-мужчинам. Для алгоритма существуют лишь единицы и нули, но главные по данным должны знать, что подобная предвзятость имеет место даже в таких ведущих технологических

