- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон
Шрифт:
Интервал:
Закладка:
Мне кажется, что Handbuch Ландау не переводился на английский. Специалист по теории чисел Хью Монтгомери (он будет главным действующим лицом в главе 18) выучил немецкий по мере того, как трудился над чтением Handbuch, держа один палец на раскрытом словаре. Он рассказывает следующее. Первые 50 с чем-то страниц посвящены историческому обзору, разбитому на разделы, каждый из которых озаглавлен по имени великого математика, внесшего главный вклад в данную область: Эвклид, Лежандр, Дирихле и т.д. Последние четыре раздела озаглавлены Hadamard, Von Mangoldt, De la Vallée Poussin, Verfasser. На Хью произвел большое впечатление вклад, который внес в науку Verfasser, но он недоумевал, почему же раньше ему не приходились слышать об этом замечательном математике. Лишь некоторое время спустя он узнал, что Verfasser по-немецки означает «автор» (обычные существительные в немецком пишутся с заглавной буквы).
V.«Все изменилось в мгновение ока с выходом в свет книги Ландау…» И Харди, и Литлвуд наверняка прочитали ее, как только она вышла. Вот слова Харди из некролога Ландау, написанного им (совместно с Хансом Хайльбронном) для Лондонского математического общества:
Handbuch, вероятно, была самой важной из написанных им книг. В ней аналитическая теория чисел впервые представлена не как собрание нескольких прекрасных разрозненных теорем, а как систематическая наука. Появление этой книги изменило сам предмет, до того представлявший собой нетронутый уголок для нескольких безрассудных смельчаков, превратив его в плодороднейшее поле для исследований, каким он и оставался в течение прошедших с тех пор трех десятилетий. Почти по всем рассматриваемым там вопросам сейчас получено новое знание, в силу чего написанное в книге устарело, и в этом-то и состоит ее величайшая роль.
Без сомнения, именно из Handbuch и Харди, и Литлвуд заразились навязчивой идеей Гипотезы Римана. Первые плоды последовали в 1914 году, но не в виде совместной работы, хотя они и сотрудничали в то время, а в виде двух отдельных статей, каждая из которых сыграла значительную роль.
Статья Харди под названием Sur lez zéros de la fonction ζ(s) de Riemann[130] вышла в Comptes Rendus Парижской академии наук. В ней он доказал первый важный результат о распределении нетривиальных нулей.
Результат Харди 1914 годаБесконечно много нетривиальных нулей дзета-функции удовлетворяют Гипотезе Римана (т.е. имеют вещественную часть одна вторая).
Хотя это и был значительный шаг вперед, для читателя важно понимать, что это не решило вопроса с Гипотезой. Имеется бесконечно много нетривиальных нулей; Харди доказал, что бесконечно много из них имеют вещественную часть одна вторая. Тем самым остаются открытыми три возможности.
• Бесконечно много нулей не имеют вещественную часть одна вторая.
• Лишь конечное число нулей не имеет вещественной части одна вторая.
• Нет нулей, вещественная часть которых не равна одной второй, — утверждение Гипотезы!
Чтобы провести аналогию, рассмотрим следующие утверждения о четных числах, превосходящих двойку, т.е. 4, 6, 8, 10, 12, …
• Бесконечно много этих чисел делится на 3; бесконечно много не делится.
• Бесконечно много из них больше чем 11; только четыре числа не больше.
• Бесконечно много из них представимы в виде суммы двух простых; нет таких, которые не представимы — гипотеза Гольдбаха (которая все еще не доказана на момент написания книги).
Статья Литлвуда, также опубликованная в Comptes Rendus Парижской академии наук в том же году, называлась Sur la distribution des nombres premiers. В ней доказан результат столь же тонкий и столь же замечательный, как результат Харди, хотя и относящийся к несколько другому направлению исследований в данной области. Обсуждение этого результата требует небольшой преамбулы.
VI.Мы уже отмечали, что в начале XX века наблюдалось следующее общее направление мыслей по поводу Гипотезы Римана. Теорема о распределении простых чисел (ТРПЧ) была доказана. С математической точностью было установлено, что действительно π(x) ~ Li(x) — или, словами, что относительная разность между π(x) и Li(x) уменьшается до нуля по мере того, как x делается все больше и больше. Так что же тогда можно утверждать об этой разности — т.е. об остаточном члене? Именно при внимательном рассмотрении остаточного члена математики обратили свои взоры к Гипотезе Римана, поскольку в работе Римана 1859 года для остаточного члена было приведено точное выражение. Как будет показано в должном месте, это выражение включает в себя все нетривиальные нули дзета-функции, так что ключ к пониманию остаточного члена каким-то образом скрыт среди этих нулей.
Чтобы говорить более конкретно, я приведу некоторые реальные значения остаточного члена. В таблице 14.1 «абсолютн.» означает разность Li(x) − π(x), а «относит.» означает это же число, отнесенное к (т.е. деленное на) π(x).
Таблица 14.1.
Мы видим, что относительная ошибка, без сомнения, уменьшается, стремясь к нулю, как ей и предписывает ТРПЧ. Это происходит потому что, хотя абсолютная ошибка тоже растет, она делает это далеко не так быстро, как π(x).
Пытливый математический ум сейчас спросит: «А как именно ведут себя эти два числа?» Имеются ли правила, описывающие медленный рост абсолютной ошибки или стремление относительной ошибки к нулю? Другими словами, если выкинуть из таблицы 14.1 вторую и четвертую колонки и рассмотреть получившуюся двухколоночную таблицу как «моментальный снимок» некоторой функции (колонки аргумент-значение), то что это будет за функция? Можно ли для нее получить формулу с волнами, как это было сделано для π(x)?
Здесь-то на сцене и появляются нетривиальные нули дзета-функции. Они тесно связаны (способом, который мы рассмотрим ниже во всех математических подробностях) с остаточным членом.
Хотя в ТРПЧ говорится об относительной ошибке, исследования в этой области в большей степени имеют дело с абсолютной ошибкой. На самом деле неважно, какую из них рассматривать. Относительная ошибка есть просто абсолютная ошибка, деленная на π(x), так что в любой момент несложно перейти от одной к другой. Итак, можно ли получить какие-нибудь результаты об абсолютном остаточном члене Li(x) − π(x)?
VII.Взглянув на рисунок 7.6 и таблицу 14.1, можно с достаточной уверенностью заключить, что абсолютная разность Li(x) − π(x) положительна и возрастает. Численные свидетельства в пользу этого так убедительны, что Гаусс в своих собственных исследованиях полагал, что всегда так и происходит. Весьма вероятно, что исследователи поначалу соглашались с тем, или, по крайней мере, чувствовали уверенность в том, что π(x) всегда меньше чем Li(x). (Относительно мнения Римана по этому поводу ясности нет.) Поэтому статья Литлвуда 1914 года оказалась сенсацией, ибо в ней было установлено, что, напротив, существуют такие числа x, что π(x) больше чем Li(x). На самом деле доказано было гораздо большее.
Результат Литлвуда 1914 годаРазность Li(x) − π(x) изменяется от положительной к отрицательной и обратно бесконечно много раз.
Если учесть, что π(x) меньше, чем Li(x), для всех x, до которых смогли добраться даже самые мощные компьютеры, то где же находится первая точка перехода, первое «литлвудово нарушение», когда π(x) становится равной, а затем и превосходит Li(x)?

