Концепции современного естествознания - Коллектив Авторов
Шрифт:
Интервал:
Закладка:
4. Наследственная информация содержится в ядре клетки и в небольших количествах – в митохондриях и хлоропластах.
Дискретность наследственной информации проявляется в независимом наследовании признаков, что было показано еще в опытах Г. Менделя по скрещиванию двух рас садового гороха – желтого и зеленого. При таком скрещивании Г. Мендель получал в первом поколении одинаковые гибриды, то есть все семена были желтые. В последующем признак, подавляющий проявление другого признака, был назван доминантным (желтая окраска семядолей), а подавляемый признак, не проявляющийся у гибридов первого поколения, назвали рецессивным (зеленая окраска семядолей). При скрещивании гибридов первого поколения Мендель установил, что во втором поколении оказалось 25 % зеленых семян и 75 % – желтых.
На основе этих опытов и установленных закономерностей были сформулированы законы моногибридного скрещивания, названные именем Г. Менделя.
► Первый закон Менделя, или закон единообразия гибридов первого поколения: при скрещивании особей, различающихся вариантами одного признака (аллельными генами), в первом поколении проявляется только один признак – доминантный.
► Второй закон Менделя, или закон расщепления: при скрещивании гибридных особей первого поколения происходит расщепление признаков. При этом расщепление по генотипу и фенотипу различно. Гибриды второго поколения расщепляются по фенотипу в отношении 3: 1, а по генотипу – в отношении 1:2:1.
► Третий закон Менделя, или закон комбинирования признаков, применим к более сложным вариантам наследования, когда родительские особи отличаются друг от друга по двум и более признакам. В таких случаях гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.
Хромосомная теория наследственности
Важным этапом в развитии генетики стало создание в начале ХХ в. американским ученым Т. Х. Морганом хромосомной теории наследственности. Ее основные положения таковы.
♦ Гены располагаются в хромосомах в линейном порядке в определенной последовательности; каждый ген занимает определенное место (локус) в хромосоме.
♦ В гомологичных хромосомах аллельные гены занимают одно и то же место.
♦ В результате удвоения хромосом происходит удвоение генов.
♦ Гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления.
♦ Число групп сцепления соответствует гаплоидному набору хромосом и постоянно для каждого вида.
♦ Нарушение сцепленного наследования признаков может быть результатом кроссинговера. (Кроссинговер – от англ. crossingover – взаимный обмен участками парных хромосом, что приводит к перераспределению (рекомбинации) сцепленных генов.)
♦ Один ген может определять один или несколько признаков; также возможно и противоположное явление, когда несколько генов определяют развитие одного признака.
♦ Гены относительно стабильны, но подвлиянием факторов внешней среды способны к мутациям.
Существенным достижением генетики является выявление механизмов наследования пола. Важнейшая роль в генетическом определении пола принадлежит хромосомному набору зиготы. Так, у человека 23 пары хромосом, из них 22 пары одинаковы как у женского, так и у мужского организма, а одна пара различна. Это половые хромосомы.
У женщин половые хромосомы одинаковы, их называют Х-хромосомами, а у мужчин различны: одна Х-хромосома, другая – У-хромосома. Женские половые клетки (яйцеклетки) одинаковы, они несут по Х-хромосоме. Мужские половые клетки (сперматозоиды) различаются по наличию половых хромосом Х или У).
Пол человека закладывается в момент оплодотворения, когда хромосомные наборы половых клеток объединяются. Решающую роль в этом играет У-хромосома.
В хромосомах располагается наследственный материал организма – дезоксирибонуклеиновая кислота (ДНК). Молекула ДНК состоит из двух полимерных (образованных повторяющимися элементами – мономерами) цепей, закрученных в спираль. Цепи построены из множества мономеров четырех видов – нуклеотидов.
Наследственная информация кодируется в молекуле ДНК благодаря сочетанию трех нуклеотидов – триплетов. Каждый триплет соответствует одной аминокислоте в синтезируемом белке, который отвечает за развитие определенного признака. В передаче генетической информации от родителей потомству большое значение имеют разные типы рибонуклеиновой кислоты (РНК): транспортная, информационная и рибосомная.
Изменчивость
Наследственность как свойство живой материи тесно связана с противоположным свойством – изменчивостью.
► Изменчивость – это способность живых организмов приобретать новые признаки.
Различают наследственную (генотипическую) и ненаследственную (модификационную) изменчивость.
Ненаследственная изменчивость возникает под влиянием тех или иных факторов внешней среды и характеризуется:
♦ групповым характером изменений;
♦ соответствием возникших изменений действию определенного фактора среды;
♦ изменениями, которые могут развиваться в определенных пределах (норма реакции).
Наследственная изменчивость связана с изменением генотипа и сохраняется в ряду поколений. Различают мутационную и комбинативную наследственную изменчивость.
Мутационная изменчивость (или мутации) представляет собой спонтанные скачкообразные изменения генетического материала, возникающие вследствие нарушений в структуре генов или хромосомы. Мутации могут быть полезными или вредными для организма. Частота мутаций в естественных условиях мала (примерно одна мутация на 200 тыс. генов). Однако влияние некоторых факторов среды существенно увеличивает число мутаций. К таким факторам, или мутагенам, относятся: ионизирующее излучение, температура, электромагнитные поля, некоторые химические вещества.
Мутации повышают генетическое разнообразие внутри популяции или вида, так как поставляют материал для естественного отбора и образования новых видов. Таким образом, положительные мутации, встречающиеся крайне редко, лежат в основе эволюционного процесса.
Комбинативная изменчивость связана с перестройкой структуры хромосомы, порядком расположения генов (рекомбинацией), при этом сами гены не изменяются.
Генетическая и клеточная инженерия
Возникновение генетической (генной) инженерии связано с созданием технологии выделения генов из ДНК и методики размножения нужного гена естествоиспытателем П. Бергом (1972 г., США). Внедрение в живой организм чужеродной генетической информации, генетическое манипулирование с целью изменения существующих и создания новых генотипов составляют одну из самых перспективных актуальных задач генной инженерии.
На основе генной инженерии возникла новая отрасль фармацевтической промышленности, представляющая собой перспективную ветвь современной биотехнологии – микробиологический синтез. С помощью методов генной инженерии получены клоны многих генов, инсулин, гистоны, коллаген и глобин мыши, кролика и человека, пептидные гормоны и интерферон, которые используют в лечебной практике.
Развитие генной инженерии делает возможным создание новых генотипов сельскохозяйственных растений и животных, для которых характерно отсутствие определенных болезней и увеличение продуктивности.
Методы генной инженерии широко применяются в медицине, фармакологии, микробиологии. Например, с помощью молекулярных проб (фрагментов ДНК) можно определить зараженность донорской крови вирусом СПИДа.
Разработаны генные технологии улучшения вакцин и создания новых вакцин. Генетики ведут исследования по генетической модификации свойств микроорганизмов, необходимых для сыроварения, виноделия, хлебопечения, производства кисломолочных продуктов.
В сельском хозяйстве используют модифицированные микробы для борьбы с вредными вирусами, микробами и насекомыми.
Клеточная инженерия занимается генетическими манипуляциями с отдельными клетками или группами клеток. К достижениям клеточной инженерии можно отнести методику оплодотворения в пробирке яйцеклетки с последующей имплантацией ее зародышей в матку. В настоящее время в мире насчитывается десятки тысяч «детей из пробирок».
Методы клеточной инженерии применяются в животноводстве при выведении животных с определенными, полезными для человека качествами. В данном случае в яйцеклетки подопытных животных внедряют участки молекул ДНК, изменяя генотип особи.
В растениеводстве с целью уменьшить сроки размножения и значительно увеличить число новых экземпляров используют клональное микроразмножение (получение растительного организма из одной клетки).