- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Энергия воды - Виктор Шаубергер
Шрифт:
Интервал:
Закладка:
Чертеж 5
Чертеж 6
Результаты этих измерений, таким образом, доказывают, что собственно испытательная установка из-за ее полукруглой, свисающей вниз конфигурации вызывает эффект, подобный эффекту закручивающейся трубы, который, однако, полностью или до самой большой степени аннулируется использованием поперечного сечения прямой трубы. В случае включения спиралевидной геликоидальной трубы (№ 2) не предполагается, что эффект нисходящей тестируемой трубы (№ 1) нейтрализуется, но, возможно, в дальнейшем даже увеличится. Следовательно, чтобы поддерживать необходимую нейтрализацию трения в испытательных трубах для водовыпуска q, необходимо далее уменьшать различия в высоте уровня воды около градиентов давления при выходе потока. На чертеже 7 водовыпуск q, зависящий от значений (h —?h), отображен на графике в двойной логарифмической системе координат.
Таблица 1. Водовыпуск прямых и геликоидальных труб
Таблица 2. Водовыпуск и потери, связанные с силой трения прямых и спиралевидных труб из меди и стекла
Соединительные линии взаимосвязанных измеренных величин водозабора и водовыпуска экспериментальной установки № 1, так же как соединительные линии прямых стеклянных и медных труб, имеют точно такие же направления и происходят по величине значения спиралевидных геликоидальных труб, тоже отображают характерные колебания последних. Результаты измерений, полученные таким образом, затем использовались для определения потерь, вязанных с силой трения в тестируемых трубах длиной 45 м, как обозначено на чертеже 7, каждая из ординат между q — h-линиями экспериментальной установки и тестируемых труб установлена и отображена в таблице 2.
Чертеж 7
На чертеже 8 водовыпуск трубы графически отображен в декартовой системе координат, основанной на значениях илы трения и соответствующих измеренных значениях водовыпуска, соотносимых вертикально и горизонтально. Хорошо заметно, что все линии соединения отображают характерный колеблющийся курс, который наиболее ясно прослеживается в случае со спиралевидной геликоидальной трубой (№ 2).
Бесспорно, исходя из конфигурации трех кривых на графике можно сделать вывод, что при равных значениях силы рения спиралевидная геликоидальная медная труба имеет большую продуктивность, чем прямая медная труба с той же ушной и таким же поперечным сечением. Эти результаты, применимые относительно турбулентного потока, в настоящий момент считаются верными, однако могут рассматриваться как подтверждение гипотез, выдвинутых на ►сновании процессов течения, развивающихся в прямых рубах благодаря винтообразному притоку воды.
С синхронизацией скорости и формы потока в спиралевидной или спиралевидной геликоидальной трубе было заметно фактическое уменьшение силы трения до нуля.
Полное исчезновение силы трения может происходить, когда кинетическая энергия воды, текущей в спиралевидной геликоидальной трубе, взаимодействует с ее спиралевидным движением, образующимся во входном отверстии благодаря нарезке на стенах трубы. Взаимодействие воспроизводит пространственные колебания воды, точно соответствующие закрученной конфигурации испытательной трубы.
В этой связи, однако, центростремительно направленная сила всасывания, являющаяся результатом закручивания течения, также вносит определенный вклад. Относительно экспериментальных моделей, исследованных в вопросе 1, фактически воздействие этой силы настолько велико, что подвешенные за один конец шелковые нити были скручены в трехмерную пространственную спираль, соответствующую форме потока, несмотря на гравитационные силы притяжения, действующие на них. Следует принимать во внимание, что те же самые слабо изогнутые потоки с сильным, центростремительно направленным закручивающимся движением и сильно изогнутые потоки с меньшим закручивающимся действием, наблюдаемым в вертикальной стеклянной трубе в испытательной установке 1, накладывались друг на друга, и это препятствовало их движению. В то же время кинетическая энергия воды образуется благодаря комбинации спиралевидной формы и нарезки через протекание воды по трехмерным спиральным и винтообразным стенкам трубы.
В случае со спиралевидной геликоидальной трубой (№ 2) имеют место следующие значения водовыпуска и скоростей потока.
Значение трения в спиралевидной геликоидальной трубе приближается к нулю:
когда q = 0,14 л/с или v = 0,28 м/с, и когда q = 0,19 л/с или v = 0,39 м/с, и когда q = 0,38 л/с или v = 0,60 м/с, и когда q = 0,46 л/с или v = 0,92 м/с и достигает максимального значения;
когда q = 0,127 л/с или v = 0,254 т/с, и когда q = 0,165 л/с или v = 0,330 м/с, и когда q = 0,225 л/с или v — 0,430 м/с, и когда q = 0,360 л/с или v =…..
В чертеже 9, который является наиболее всесторонним дополнением к чертежу 8, примечательно, что водовыпуск и гладких и прямых труб подвергается ритмичным колебаниям, очень похожим на таковые у спиралевидной геликоидальной трубы. Это, по-видимому, объясняется тем, что вода спирально закручивается во время подачи на водозаборнике экспериментальной установки, и тем, что установка имеет U-образную форму. Направление линий соединения, соответствующих измеренным значениям, даже позволяет предположить, что здесь мы имеем дело с двумя связанными с водовыпуском колебаниями, расположенными одно на другом, которые, вероятно, являются результатом объединенного действия, относящегося к скручиванию движения и конфигурации испытательного стенда.
Кроме того, следует отметить, что q — h-линия прямой стеклянной трубы (№ 4) в диапазоне водовыпуска от 0,13 до 0,20 л/сек абсолютно точно следует за кривой, которая в соответствии с принципом Вайсбаха описывается отношением
Н = 118.x tf
В сразу следующем после этого диапазоне большего водовыпуска тем не менее q — h-линия стеклянной трубы отклоняется очень заметно от этого фундаментального уравнения Вайсбаха. Водовыпуски увеличиваются намного быстрее с увеличением значения силы трения, чем это ожидаемо согласно основному закону Вайсбаха. Это результат процесса закручивания потока на водозаборе и U-образной формы испытательной установки.
Низлежащая часть q — h-линии для прямой медной трубы идет совершенно параллелью к q — h-линии стеклянной трубы; она смещается вниз относительно уровня трения h = 2,5 см. Потери, связанные с силой трения в медной трубе в области, где q = 0,13 кО, 20 л/сек, составляют толькоЬ=118х q2 — 2,5, несмотря на большую жесткость стен медной трубы по сравнению со стеклянной.
Это сокращение уровня трения при прохождении водных потоков через медные трубы может объяснить только тот факт, что медь более благоприятна для формирования закручивания потока, чем стекло. Как было уже обнаружено ранее, силы всасывания проявляются в потоке воды через это закручивающееся движение. Они и приводят к наблюдаемому сокращению трения. Величина этой всасывающей силы может быть условно определена посредством очень точного уменьшения трения, которое происходит самопроизвольно в областях с уменьшенным трением. Закручивающееся движение, рождающееся в медной трубе, производит дополнительную всасывательную способность А, где
А = 2,5q в см г/сек в низлежащей области q — h-линия и которая даже повышается в дальнейшем с увеличением водовыпуска от 325 до 500 см г/сек.
Не боясь заблуждений, можно предположить, что основное уравнение Вайсбаха для трения в трубах также справедливо при значении водовыпуска больше, чем 0,2 л/сек, если на водозаборнике создается препятствие для образования закручивающегося движения. Отсюда возможно дальнейшее развитие параболы для уровня трения по закону h = 118 х q = 0,2 л/сек. Разница в ординатах между этими параболами и соединительными линиями трех тестируемых труб отражает уменьшение уровней трения, и, как следствие этого, также может быть определена сила всасывания, которую создает закручивающееся движение воды и которая, как описано выше, формирует основу для подсчета всасывающей способности.
Чтобы проиллюстрировать этот ход мыслей, следует сказать, что значение силы всасывания в зависимости от водовыпуска графически отображается на 10-м чертеже. С его помощью была определена всасывающая способность А и отражена в чертеже 11 в виде q — А-кривых в зависимости от водовыпуска.
В случае со стеклянной трубой всасываающая способность постоянно увеличивается вплоть до А = 850 см г/сек при водовыпуске q = 300 см3/сек. Медная труба поставляет почти тот же объем, а всасывающая способность в ней приближается к А= 1860 см г/сек. То есть материал, из которого сделана труба, может интенсифицировать всасывающую способность воды на 1860—850 = 1010 см г/сек. С водовыпуском, равным 310 см г/сек, всасывательная способность спиралевидных геликоидальных труб достигает своего максимального значения в исследуемой области измерения, а именно А = 310» 11,1 — 3450 см г/сек. Это в 4,05 раза больше, чем у стеклянной трубы, ив 1,85 раза больше, чем у прямой медной.

