Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Химия » Общая химия - Николай Глинка

Общая химия - Николай Глинка

Читать онлайн Общая химия - Николай Глинка

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 52 53 54 55 56 57 58 59 60 ... 180
Перейти на страницу:

Непостоянство состава растворов приближает их к механическим смесям, но от последних они резко отличаются своею однородностью. Таким образом, растворы занимают промежуточное положение между механическими смесями и химическими соединениями.

Растворение кристалла в жидкости протекает следующим образом. Когда вносят кристалл в жидкость, в которой он может растворяться, от поверхности его отрываются отдельные молекулы. Последние благодаря диффузии (см. стр. 216) равномерно распределяются по всему объему растворителя. Отделение молекул от поверхности твердого тела вызывается, с одной стороны, их собственным колебательным движением, а с другой, — притяжением со стороны молекул растворителя. Этот процесс должен был бы продолжаться до полного растворения любого количества кристаллов, если бы одновременно не происходил обратный процесс — кристаллизация. Перешедшие в раствор молекулы, ударяясь о поверхность еще не растворившегося вещества, снова притягиваются к нему и входят в состав его кристаллов. Понятно, что выделение молекул из раствора будет идти тем быстрее, чем выше их концентрация в растворе. А так как последняя по мере растворения вещества увеличивается, то, наконец, наступает такой момент, когда скорость растворения становится равной скорости кристаллизации. Тогда устанавливается динамическое равновесие, при котором в единицу времени столько же молекул растворяется, сколько и выделяется из раствора. Раствор, находящийся в равновесии с растворяющимся веществом, называется насыщенным раствором.

74. Способы выражения состава растворов.

Насыщенные растворы применяют сравнительно редко. В большинстве случаев пользуются ненасыщенными растворами, содержащими меньше растворенного вещества, чем его содержит при данной температуре насыщенный раствор. При этом растворы с низким содержанием растворенного вещества называются разбавленными, с высоким — концентрированными.

Состав раствора (и, в частности, содержание в нем растворенного вещества) может выражаться разными способами — как с помощью безразмерных единиц (долей или процентов), так и через размерные величины — концентрации. В химической практике наиболее употребительны следующие величины, выражающие содержание растворенного вещества в растворе:

1. Массовая доля — отношение (обычно — процентное) массы растворенного вещества к массе раствора. Например, 15% (масс.) водный раствор хлорида натрия —это такой раствор, в 100 единицах массы которого содержится 15 единиц массы NaCl и 85 единиц массы воды.

2. Молярная доля — отношение количества растворенного вещества (или растворителя) к сумме количеств всех веществ, составляющих раствор.

- 207 -

В случае раствора одного вещества в другом молярная доля растворенного вещества (N2) равна

N2 = n2/(n1 + n2)

а молярная доля растворителя (N1)

N1 = n1/(n1 + n2)

где n1 и n2 — соответственно количества вещества растворителя и растворенного вещества.

3. Молярная концентрация, или молярность - отношение количества растворенного вещества к объему раствора. Обычно молярность обозначается Cм или (после численного значения молярности) М. Так, 2M H2SO4 означает раствор, в каждом литре которого содержится 2 моля серной кислоты, т. е. Cм = 2 моль/л.

4. Моляльная концентрация, или моляльность — отношение количества растворенного вещества к массе растворителя. Обычно моляльность обозначается буквой m. Так, для раствора серной кислоты запись m = 2 моль/кг (H2O) означает, что в этом растворе на каждый килограмм растворителя (воды) приходится 2 моля H2SO4. Моляльность раствора в отличие от его молярности не изменяется при изменении температуры.

5. Эквивалентная, или нормальная концентрация — отношение числа эквивалентов растворенного вещества к объему раствора. Концентрация, выраженная этим способом, обозначается Cн или (после численного значения нормальности) буквой н. Так, 2 н. H2SO4 означает раствор, в каждом литра которого содержится 2 эквивалента серной кислоты, т. е. моль/л.

Пользуясь растворами, концентрация которых выражена нормальностью, легко заранее рассчитать, в каких объемных отношениях они должны быть смешаны, чтобы растворенные вещества прореагировали без остатка. Пусть V1 л раствора вещества 1 с нормальностью N1 реагирует с V2 раствора вещества 2 с нормальностью N2. Это означает, что в реакцию вступило N1V1 эквивалентов вещества 1 и N2V2 эквивалентов вещества 2. Но вещества реагируют в эквивалентных количествах, следовательно

V1N1 = V2N2

или

V1 : V2 = N2 : N1

Таким образом, объемы растворов реагирующих веществ обратно пропорциональны их нормальностям.

На основании этой зависимости можно не только вычислять требуемые для проведения реакций объемы растворов, но и обратно, по объемам затраченных на реакцию растворов находить их концентрации.

- 208 -

Пример 1. Сколько миллилитров 0,3 н. раствора хлорида натрия надо прибавить к 150 мл 0,16 н. раствора нитрата серебра, чтобы осадить все находящееся в растворе серебро в виде хлорида серебра?

Подставляя данные задачи в последнее уравнение, получим:

150/V2 = 0,3/0,16, откуда V2 = 0б16·150/0,3 = 80 мл

Пример 2. Для централизации 40 мл раствора серной кислоты потребовалось прибавить к ним 24 мл 0,2 н. раствора щелочи. Определить нормальность взятого раствора H2SO4.

Обозначив неизвестную нормальность раствора серной кислоты через х, получим:

40:24 = 0,2 : х, откуда х = 24·0,2/40 = 0,12 н.

75. Гидраты и кристаллогидраты.

Большинство веществ, находящихся в кристаллическом состоянии, растворяются в жидкостях с поглощением теплоты. Однако при растворении в воде гидроксида натрия, карбоната калия, безводного сульфата меди и многих других веществ происходит заметное повышение температуры. Выделяется теплота также при растворении в воде некоторых жидкостей и всех газов.

Количество теплоты, поглощающейся (или выделяющейся) при растворении одного моля вещества, называется теплотой растворения этого вещества.

Теплота растворения имеет отрицательное значение, если при растворении теплота поглощается, и положительное — при выделении теплоты. Например, теплота растворения нитрата аммония равна -26,4 кДж/моль, гидроксида калия +55,6 кДж/моль и т. д.

Процесс растворения сопровождается значительным возрастанием энтропии системы, так как в результате равномерного распределения частиц одного вещества в другом резко увеличивается число микросостояний системы. Поэтому, несмотря на эндотермичность растворения большинства кристаллов, изменение энергии Гиббса системы при растворении отрицательно и процесс протекает самопроизвольно.

При растворении кристаллов происходит их разрушение, что требует затраты энергии. Поэтому растворение должно было бы сопровождаться поглощением теплоты. Если же наблюдается обратный эффект, то это показывает, что одновременно с растворением происходит какое-то взаимодействие между растворителем и растворенным веществом, при котором выделяется в виде теплоты больше энергии, чем ее расходуется на разрушение кристаллической решетки.

Действительно, в настоящее время установлено, что при растворении многих веществ их молекулы (или ионы) связываются с молекулами растворителя, образуя соединения, называемые сольватами (от латинского solvere — растворять); этот процесс называется сольватацией.

В частном случае, когда растворителем является вода, эти соединения называются гидратами, а самый процесс их образования — гидратацией.

В зависимости от природы растворенного вещества, сольваты могут образовываться различными путями. Так, при растворении веществ с ионной структурой молекулы растворителя удерживаются около иона силами электростатического притяжения. В этом случае говорят о ион-дипольном взаимодействии. Кроме того, может иметь место донорно-акцепторное взаимодействие. Здесь коны растворенного вещества обычно выступают в качестве акцепторов, а молекулы растворителя — в качестве доноров электронных пар. Ясно, что в таком взаимодействии могут участвовать растворители, молекулы которых обладают неподеленными электронными парами (например, вода, аммиак). Гидраты, образующиеся в результате донорно-акцепторного взаимодействия, представляют собой частный случай комплексных соединений, рассматриваемых в главе XVIII (аквакомплексы — см. § 204).

При растворении веществ с молекулярной структурой сольваты образуются вследствие диполь-дипольного взаимодействия. Диполи растворенного вещества могут быть при этом постоянными (у веществ с полярными молекулами) или наведенными (у веществ с неполярными молекулами).

1 ... 52 53 54 55 56 57 58 59 60 ... 180
Перейти на страницу:
На этой странице вы можете бесплатно скачать Общая химия - Николай Глинка торрент бесплатно.
Комментарии