- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Голубой адепт - Пирс Энтони
Шрифт:
Интервал:
Закладка:
Ну, допустим, мы будем-раздвигать стороны треугольника, увеличивая таким образом его углы… Но тогда линии будут искривлены, что не допускается по определению треугольника… А если треугольник нарисован на кривом листе бумаги! Какой это лист? Ага! искривленная поверхность. Нох не оговорил, что поверхность обязательно должна быть прямая. Треугольник, начерченный на искривленной поверхности…
— Начертим этот треугольник на искривленной поверхности?
— Никогда в жизни! Мой треугольник такой же жесткий, каким был ваш собственный, — обиделся Нох.
А Стайл был так уверен… На сферической поверхности он мог бы начертить восемь треугольников, каждый с тремя прямыми углами, или четыре треугольника с двумя прямыми углами и одним в сто восемьдесят… Искривление поверхности позволило бы искривлять линии, одновременно оставляя их прямыми. Но что толку мечтать: Нох запретил это.
Но все же будто бы стало теплее. Антенна чужеземца довольно нервно подрагивала. Хорошо, поверхность не искривлена, зато искривлено само пространство! Такая постановка вопроса тоже позволяет раздвигать углы треугольника, а треугольник остается жестким. Теоретически пространство вселенной искривлено. Теперь предположим, что треугольник начерчен в космосе, в космических пропорциях.
— Ничего, если это будет довольно большой треугольник? — спросил Стайл.
— Нет, — отказался Нох. — Стандартный треугольник, который можно удержать в щупальцах.
Да. Вся сообразительность Стайла, все напряжение его воображения, похоже, бесполезны. Значит, он не может начертить этот треугольник в искривленном пространстве?
Нет, еще не все потеряно.
— А как насчет того, чтобы треугольник переместить куда-нибудь в другое место?
Отростки-щупальца дрогнули.
— Перемещайте.
— Давайте начертим его в районе черной дыры во вселенной, где интенсивная гравитация раздвигает пространство. В центре черной дыры пространство может быть даже деформировано. Там любая геометрическая фигура…
— Существо решило задачу, — перебил Нох с сожалением. — Загадывайте следующую.
Игра была нелегкая. Стайл чувствовал нервный озноб. Он боялся, что потерпит поражение в пространственных представлениях. Он выдумал загадку про третье измерение, а Нох вызвал к жизни четвертое. Лучше бы увести разговор куда-нибудь в другую сторону.
— Превратите четыре восьмерки в три единицы, — сказал Стайл, — и используйте только эти восьмерки.
Может статься, что для такого сообразительного чужеземца вопрос Стайла окажется детской забавой. Но, во всяком случае, стоит попытаться.
— Можно ли слагать, вычитать, умножать, делить, возводить в степень, извлекать корень?
— Можно, если при этом используются только восьмерки. Но, конечно, простое сложение восьмерок никогда не приведет вас к успеху.
— Можно ли создавать из цифр символы?
— Вы хотите назвать тройку треугольником, например, а четыре восьмерки — двойным рядом кругов? Нет, в данном случае речь идет о другом. Именно о математическом варианте решения.
Нох был на ложном пути.
Но вот чужеземец напрягся и глубоко вздохнул. По его шкуре пробежала легкая дрожь.
— Возможно ли, разделив восемьсот восемьдесят восемь на восемь получить сто одиннадцать?
— Возможно, — сказал Стайл. Что и говорить, задача не заняла у Ноха много времени. Опять отвечать Стайлу. О дьявол!
— Человеческая природа, — начал Нох, — тяготеет к сферической поверхности, проще — к кругу. Свидетельство тому — хотя бы контуры тела особей женского пола… Говоря человеческим языком, все небесные тела, имея сферическую форму, имеют также север и юг, Северный и Южный полюс, верхнюю и нижнюю точки вращения. Это главные точки на небесном теле, не так ли?
— Возможно, но к чему вы клоните?
— Итак, может случиться, что некто обходит, скользит или начал свой путь на Северном полюсе, и вот он делает единицу пути на юг, затем единицу пути на восток, затем под прямым углом такую же единицу пути — на север и после этого оказывается в том месте, откуда вышел?
— Опять в том месте, откуда он начал путь, на Северном полюсе? Согласен, — сказал Стайл. — Это единственное место планеты, откуда возможна подобная прогулка. Идешь на юг, потом на восток, потом на север — и ты дома! Это действительно вариант парадокса треугольника: если два прямых угла…
— Не желаете ли открыть новое местечко, откуда можно начать подобный маршрут?
— Идти на юг единицу пути, затем — на восток такую же единицу пути, затем — на север такую же единицу пути — и прийти к начальной точке? Без того условия, чтобы начать путь на Северном полюсе?
— Лучше не сформулируешь мою задачу!
Опять это существо сделало то же самое! Стайл мог бы присягнуть, что не было на планете другого такого места. Но что же, не оставалось ничего другого, кроме как найти его.
Начинать путь надо не с Северного полюса! И все же единственным другим местом на планете, где работали все законы Северного полюса, был Южный полюс — но как может некто путешествовать на юг отсюда? Ведь по определению южный полюс — самая южная точка планеты.
— Все единицы пути одинаковой длины и все они прямые? — спросил Стайл.
— Неделикатно.
— Я полагаю, вы имеете в виду — несомненно?
— Не решено, не определено, — согласился Нох.
— Планета не может провалиться в черную дыру?
— Правильно. Не может. Она будет расплющена.
Итак, будем плясать отсюда. Никакого четвертого измерения. И все же, где такое может быть? Ни на Северном полюсе, ни на Южном!..
Но погодите-ка, он берет на себя слишком много. Он совсем не обязан идти на юг с Южного полюса. Он должен идти на юг по направлению к Южному полюсу. Или почти к Южному полюсу…
— Опояшем кругом Южный полюс, — сказал Стайл. — Линия широты на север, самая северная, будет находиться как раз на расстоянии единицы пути. Итак, начинаем наш путь с этой широты, проходим на юг единицу пути, потом на восток, вокруг полюса (южного), потом на север и приходим туда, откуда вышли.
— Совершенно верно, — сказал Нох, — это существо великолепно!
Точно такие же чувства испытывал Стайл по отношению к своему сопернику. Теперь он хоть и боялся, что проиграет следующий раунд, но отважно ступил на новую стезю, мечтая хоть о какой-нибудь интеллектуальности противника.
— Речь пойдет о формуле «x^2 + y^2 + z^2», которая графически представлена как окружность с радиусом "z". Знакомы ли вы с этим явлением?
— Да. У нас это называют «Уравнением Снежной Лавины».
Стайл заподозрил, что в этом ответе Ноха скрывается ирония, однако ему было необходимо сосредоточиться на условии задачи, а не отвлекаться на частности. Он был доволен, что не дал втянуть себя в спор из-за игры слов, в состязание в каламбурах.
(adsbygoogle = window.adsbygoogle || []).push({});
