- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Великая Теорема Ферма - Саймон Сингх
Шрифт:
Интервал:
Закладка:
В начале января 1993 года я решил, что мне необходимо довериться кому-нибудь, кто разбирается в той геометрической технике, которую я изобрел для расчетов. Эксперта я выбирал очень тщательно: ведь мне предстояло доверить ему свою тайну, и я должен был быть уверен в том, что он не разгласит ее. Я решил рассказать обо всем Нику Катцу».
Профессор Ник Катц также работал на математическом факультете Принстонского университета и знал Уайлса несколько лет. Несмотря на их близкое соседство, Катц никогда не интересовался тем, что происходило буквально в том же коридоре. Он в мельчайших деталях помнит тот момент, когда Уайлс открыл ему свою тайну: «Однажды Эндрю заглянул ко мне на чай и попросил меня зайти к нему в кабинет. Ему хотелось обсудить со мной кое-что. Я не имел представления, о чем пойдет речь, но отправился к нему в кабинет. Когда мы вошли, Эндрю запер дверь на ключ и сообщил мне, что, как ему кажется, он может доказать гипотезу Таниямы-Шимуры… Я был просто вне себя от изумления, настолько фантастически звучало его заявление.
Уайлс пояснил, что в значительной части своего доказательства он использовал разработанное им обобщение метода Колывагина-Флаха. Именно эта часть вызывала у него наибольшие сомнения, и он хотел просмотреть ее вместе с кем-нибудь, чтобы убедиться, что все в ней правильно. По мнению Уайлса, я был тем человеком, который мог бы помочь ему проверить сомнительную часть, но мне показалось, что он попросил меня по другой причине. Уайлс был уверен, что я буду держать язык за зубами и ничего не расскажу другим о его работе». После шести лет, проведенных в добровольной изоляции, Уайлс открыл свою тайну. Теперь Катцу предстояло преодолеть внушительную гору вычислений, выполненных Уайлсом. Все, что сделал Уайлс, было открытием, и Катцу пришлось основательно подумать над тем, как лучше осуществить проверку: «То, что собирался объяснить мне Уайлс, было необычайно велико по объему. Не стоило и пытаться изложить все за одну неформальную беседу в его кабинете. Для работы столь большого объема был необходим цикл еженедельных лекций, в противном случае было бы невозможно разобраться в сути дела. И мы решили устроить такой курс лекций».
Уайлс и Катц пришли к мнению, что оптимальной стратегией был бы курс лекций для аспирантов математического факультета. Уайлс должен был читать лекции, а Катц быть одним из слушателей. Курс должен был охватить ту часть доказательства, которая нуждалась в проверке, но аспирантам об этом не было известно. Изящность такого способа проверки доказательства заключалась в том, что Уайлс получал возможность шаг за шагом объяснить весь ход своих рассуждений, не вызвав никаких подозрений на факультете. Для всех остальных это был еще один курс для аспирантов.
«Итак, Эндрю объявил курс лекций под названием "Вычисления по поводу эллиптических кривых", — вспоминает Катц с лукавой улыбкой. — Название было вполне безобидным и могло означать что угодно. Уайлс ни словом не обмолвился ни о Ферма, ни о Танияме и Шимуре, а сразу углубился в технические вычисления. Ни за что на свете нельзя было догадаться, о чем в действительности шла речь. Вычисления он проводил так, что если вы не знали, ради чего все делалось, то вычисления казались невероятно сложными и техническими. А если вы не знаете, для чего вычисления, то проследить за ними невозможно. Более того, следить за сложными выкладками трудно даже в том случае, когда вам известно, куда они ведут. Как бы то ни было, аспиранты один за одним переставали ходить на лекции, и через несколько недель я остался единственным слушателем в аудитории».
Катц сидел в аудитории и внимательно следил за каждым шагом в вычислениях Уайлса. Прослушав курс, Катц пришел к заключению, что метод Колывагина-Флаха работает превосходно. Никто из остальных сотрудников математического факультета не подозревал о том, что происходит. Никто и не думал, что Уайлс может в самом ближайшем времени заявить о своих притязаниях на самый важный приз в математике. План Уайлса и Катца удался на славу.
По завершении курса лекций Уайлс сосредоточил все свои усилия на завершении доказательства. Он успешно применял метод Колывагина-Флаха к одному семейству эллиптических кривых за другим, и на этой стадии только одно семейство оставалось неприступным. Уайлс описывает, как он пытался восполнить последний элемент доказательства: «Однажды утром в конце мая Нада гуляла с детьми, а я сидел за письменным столом и размышлял о последнем семействе эллиптических кривых. Я просматривал статью Барри Мазура, как вдруг мое внимание привлекла одна фраза. В ней упоминалась некая конструкция XIX века, и я внезапно понял, что мне нужно применить эту конструкцию, чтобы методом Колывагина-Флаха можно было воспользоваться и в случае последнего семейства эллиптических кривых. Я продолжал обдумывать мелькнувшую идею и после полудня и даже забыл спуститься к ленчу. Часам к трем-четырем дня я окончательно убедился в том, что мне удалось решить последнюю оставшуюся проблему. Время близилось к чаепитию. Я спустился вниз, очень удивив Наду столь большим опозданием. "Я доказал Великую теорему Ферма", — сказал я в свое оправдание».
Лекция века
После семи лет работы в одиночку Уайлс наконец завершил доказательство гипотезы Таниямы-Шимуры и считал, что его мечта — доказать Великую теорему Ферма — почти исполнилась.
«Итак, к маю 1993 года я пребывал в убеждении, что Великая теорема Ферма в моих руках, — вспоминает Уайлс. — Мне хотелось еще раз проверить доказательство, а в конце июня в Кембридже должна была состояться конференция, и я подумал, что лучшего места для того, чтобы сообщить о моем доказательстве, не найти, ведь Кембридж — мой родной город, и я учился там в аспирантуре».
Конференция проводилась в Институте сэра Исаака Ньютона. На этот раз Институт планировал провести симпозиум по теории чисел под не совсем ясным названием «L-функции и арифметика». Одним из организаторов конференции был бывший научный руководитель Уайлса Джон Коутс: «Мы собрали людей со всего земного шара, работавших над этим обширным кругом проблем, и, разумеется, Эндрю, был среди приглашенных. Мы планировали чтение усиленного курса лекций в течение недели, и первоначально, из-за недостатка времени, отводимого на лекции, я предоставил Эндрю возможность прочитать две лекции. Но когда выяснилось, что ему необходима третья лекция, я отдал ему свое время. Мне было известно, что Эндрю получил какой-то крупный результат, хотя я не имел представления, о чем идет речь».
Уайлс прибыл в Кембридж за две с половиной недели до начала его лекций, и он хотел как можно лучше использовать предоставившиеся возможности: «Я решил проверить доказательство, особенно ту ее часть, которая использует метод Колывагина-Флаха, с помощью одного-двух экспертов. Первым, кому я дал доказательство на проверку, был Барри Мазур. Насколько мне помнится, я сказал ему: "У меня с собой есть рукопись с доказательством одной теоремы." Барри очень удивился, но я настаивал: "Пожалуйста, посмотрите, все ли в порядке". Какое-то время ушло у него на то, чтобы бегло просмотреть рукопись. Барри был изумлен. Я сообщил, что буду говорить об этой теореме в своих лекциях и что мне действительно хотелось, чтобы он проверил, все ли в порядке».
Один за другим в Институт Ньютона начали прибывать самые выдающиеся специалисты. Среди участников конференции был и Кен Рибет, чьи вычисления в 1986 году вдохновили Уайлса на семилетние поиски. Он вспоминает: «Я прибыл на конференцию по L-функциям и эллиптическим кривым. Все шло как обычно, пока не начали распространяться самые причудливые слухи о лекциях, которые должен был прочитать Эндрю Уайлс. Согласно этим слухам, Уайлсу удалось доказать Великую теорему Ферма. Я думал, что все это чепуха. Не верил в то, что такое возможно. Было множество случаев, когда в математике начинали циркулировать слухи, особенно по электронной почте. Как показывает опыт, доверять таким слухам не стоит. Между тем слухи на конференции не прекращались. Эндрю отказывался отвечать на вопросы и вообще вел себя странно. Коутс спросил у него без обиняков: "Эндрю, что Вы доказали? Может быть, нам нужно созвать пресс-конференцию?" Эндрю только покачал головой и промолчал. Он готовился разыграть спектакль по всем правилам.
Однажды Эндрю подошел ко мне и принялся расспрашивать о том, что я сделал в 1986 году, и о каких-то деталях истории с идеями Фрея. Я еще подумал про себя, что он вряд ли доказал гипотезу Таниямы-Шимуры и Великую теорему Ферма, иначе он не стал бы расспрашивать меня об этом. Я не стал напрямую спрашивать Уайлса о том, верны ли слухи, потому, что вел он себя очень хитро, и было понятно, что честного ответа я не получу. Поэтому я ограничился тем, что заметил: "Эндрю, если Вы собираетесь говорить об этой своей работе, то знайте, что вокруг нее происходит следующее". Я смотрел на Уайлса так, как если бы мне было что-то известно, но в действительности я не знал, что происходит. Я терялся в догадках».

