- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (СИ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Строгие результаты квантовой теории поля для сильных взаимодействий
На основе квантовой теории поля были строго получены некоторые результаты, вытекающие из аналитических свойств амплитуды рассеяния. Аналитичность амплитуды по энергии позволяет записать дисперсионные соотношения, с помощью которых действительная часть амплитуды рассеяния под нулевым углом выражается через интеграл от мнимой части амплитуды. Поскольку, согласно оптической теореме, мнимая часть амплитуды упругого рассеяния вперёд в «физической» области (на правом разрезе комплексной плоскости s) связана с полным сечением рассеяния частицы, а на левом разрезе (благодаря перекрёстной симметрии) выражается через полное сечение рассеяния античастицы, действительная часть амплитуды может быть представлена в виде дисперсионного интеграла, в который входит разность сечений для частиц и античастиц на одной и той же мишени. Помимо этого, в дисперсионное соотношение входит вклад от полюсов, лежащих в «нефизической» области (например, в случае p N-рассеяния — от полюса, отвечающего виртуальному превращению p + N ® N ® p + N). Одно из важных следствий дисперсионных соотношений — возможность определить из экспериментальных данных константу взаимодействия нуклонов с пионами и проверить её универсальность в различных реакциях. Другое следствие относится к асимптотическому поведению полных сечений рассеяния частиц и античастиц при высоких энергиях. Исходя из предположения о том, что упругое рассеяние адронов высокой энергии носит характер дифракционные рассеяния с постоянным радиусом (см. выше), а полные сечения стремятся с ростом энергии к постоянным пределам, И. Я. Померанчук на основе дисперсионных соотношений доказал теорему о равенстве этих пределов для полных сечений рассеяния частиц и античастиц на одной и той же мишени [например, s (p+ + р) ® (p- + р)].
На основе принципов квантовой теории поля было показано, что амплитуда рассеяния является аналитической функцией переменного z = cosJ внутри эллипса, большая полуось которого выходит в «нефизическую» область z > 1 и определяется наименьшей массой частиц, существующих в t-kaнале реакции (т. е. частиц, переносящих С. в.). Из аналитичности амплитуды в этом эллипсе вытекает, что парциальные амплитуды рассеяния, отвечающие столкновению частиц с относительным орбитальным моментом l, экспоненциально убывают при больших 1, начиная с величины, пропорциональной , где m — наименьшая масса частиц, переносящих взаимодействие. Этот результат соответствует качественным соображениям, согласно которым радиус взаимодействия, обусловленного обменом какими-либо частицами, обратно пропорционален массе частиц, переносящих взаимодействие. Действительно, если взаимодействие имеет радиус R0, то максимальный орбитальный момент l0 при столкновении частиц с импульсом р, при котором ещё происходит взаимодействие, определяется соотношением |p|R0 » , т. е. R0 ~ lns/m. Т. о., аналитические свойства амплитуды рассеяния как функции переданного импульса позволяют установить максимальный радиус взаимодействия, который, однако, может расти с ростом энергии пропорционально lns. Отсюда следует, что полное сечение взаимодействия не может увеличиваться с ростом энергии быстрее, чем ln2s, а дифракционных конус в упругом рассеянии — сужаться быстрее, чем ln2s. Из аналитических свойств амплитуды рассеяния и короткодействующего характера С. в. вытекает ряд теорем, например равенство дифференциальный сечений рассеяния частиц и античастиц на одной мишени, обобщение теоремы Померанчука на случай растущих с увеличением энергии сечений и радиусов взаимодействия и др.
На основе дисперсионных соотношений и условия унитарности развита теория, описывающая в области энергий приблизительно до 1 Гэв процессы рождения p-мезонов g-квантами (т. н. фоторождение), процессы рассеяния p-мезонов на нуклонах и p-мезонах и др.
Реджевские траектории — основа динамической систематики частиц Амплитуда рассеяния частицы выражается через парциальные амплитуды fl (E), отвечающие различным орбитальным моментам l столкновения. По самому квантомеханическому смыслу величины l могут принимать лишь целые положительные значения. Однако для случая рассеяния частицы на каком-либо сферически симметричном потенциале парциальные амплитуды можно формально продолжить в область комплексных значений l. При этом можно показать, что парциальная амплитуда является аналитической функцией l в правой полуплоскости комплексного переменного l (точнее, при Rel > - 1/2). Метод аналитического продолжения по l ввёл итальянский физик Т. Редже. Он показал, что для короткодействующих потенциалов (в том числе для потенциала Юкавы и суперпозиции таких потенциалов) особенностями парциальной амплитуды правее линии Rel = - 1/2 могут являться только полюсы li = li (E), положение которых в комплексной плоскости зависит от энергии. Эти полюсы, называются полюсами Редже, имеют простой физический смысл. Стабильные связанные состояния и резонансы непосредственно получаются из полюсов Редже. Если при некоторых значениях энергии Е = En ниже порога (т. е. при Е < 0 для рассеяния частицы на внешнем поле, обращающемся в 0 на ¥, или при Е < ma + mb для процессов столкновения частиц «а» и «b») величина li (En) равна целому положительному числу l, то это означает, что система имеет стабильные связанные состояния с орбитальным моментом l. Если при значениях энергии Е = Er (выше порога) Re li (Er) равна целому положительному числу, то это означает, что система имеет резонансы. Функция li (E) называется реджевской траекторией. Заметим, что выше порога реакции она является комплексной. Учёт обменного взаимодействия приводит к тому, что для связанных состояний и резонансов с чётными орбитальными моментами будет одна траектория Редже, а для нечётных — другая.
Приведём пример траектории Редже для рассеяния электрона в кулоновском поле ядра водородоподобного атома. Уровни энергии в этом случае определяются формулой Бора:
(n — главное квантовое число, Z — атомный номер; см. Атом), что даёт зависимость:
,
в которой целым положительным значениям l отвечают определённые уровни энергии системы En.
Для значений Е > 0 (выше порога) l (E) равна
(где k — волновое число, связанное с энергией соотношением . Т. к. Rel (E) для Е > 0 не равна целому положительному числу, это означает, что система не имеет резонансных состояний.
Траектории Редже явились основой систематики ядерно-стабильных частиц и резонансов. В отличие от систематики, основанной на симметрии частиц, эта систематика опирается на динамику взаимодействия. При помощи реджевской траектории a. (Е) можно систематизировать частицы с одинаковыми внутренними характеристиками и отличающимися на чётное число значениями спина. Группы частиц, объединённые в супермультиплеты, должны, следовательно, повторяться с различными значениями спинов (отличающимися на чётное число). Т. е. наряду с октетом барионов со спином 1/2 должны существовать октеты барионов со спином 5/2, 9/2 и т. д. Т. о., получается некоторый аналог периодической системы Менделеева и реджевские траектории, объединяющие частицы с одинаковыми внутренними характеристиками, аналогичны её столбцам.
Как показывает опыт, реджевские траектории для частиц являются приближённо линейными функциями от квадрата их масс (рис. 5). Траектория, на которой лежат резонансы с квантовыми числами (кроме l) вакуума (I = J = 0, чётность Р = + 1), играет важную роль для феноменологического описания процессов рассеяния, определяя полное сечение при очень высоких энергиях (она называются вакуумной траекторией, или траекторией Померанчука). Процессы, в которых происходит передача заряда, странности и др. квантовых чисел (например, p- + р ® pq + n), при феноменологическом анализе описываются траекториями Редже с соответствующими квантовыми числами («реджеонами»).

