- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон
Шрифт:
Интервал:
Закладка:

Чудесным (как мне представляется) образом эта бесконечная сумма сходится для любого числа z. Знаменатели растут так быстро, что рано или поздно побеждают любую степень любого числа. Равным образом чудесно, что если z — натуральное число, то бесконечная сумма оказывается в точности равной тому, что мы ожидаем от определения «степени» в обычном смысле, хотя разглядывание выражения (13.1) и не дает никаких намеков на то, почему бы такое могло случиться. Если z равно 4, то этот ряд оказывается равным в точности тому же, чему равно e×e×e×e (что, собственно, и понимается под обозначением e4).
Давайте просто подставим πi в выражение (13.1) и посмотрим, как быстро оно сходится. Если z равно πi, то z2 равно −π2; z3 равно −π3i; z4 равно π4; z5 равно π5i и т.д. Подставляя эти значения в бесконечную сумму и вычисляя возникающие степени числа π (для простоты с точностью до шести знаков после запятой), получаем сумму
eπi = 1 + 3,141592i − 9,869604/2 − 31,00627i/2 + 97,409091/24 + 306,019685i/120 − ….Если сложить первые 10 из этих членов, то получим −1,001829104 + 0,006925270i. Если сложить первые 20 чисел, то результат будет равен −0,9999999999243491 − 0,000000000528919i. Вполне определенным образом сумма сходится к −1. Вещественная часть приближается к −1, а мнимая исчезает.
Можно ли и логарифмическую функцию продолжить на комплексные числа? Да. И получится, разумеется, в точности функция, обратная к показательной. Если ez = w, то z = ln w. К сожалению, как и в случае квадратных корней, если мы не соблюдем меры предосторожности, мы тут же попадем в зыбучие пески многозначных функций. Это происходит из-за того, что в комплексном мире показательная функция иногда принимает одно и то же значение при различных аргументах. Например, куб числа −1, в соответствии с правилом знаков, есть −1; так что возведение в куб обеих частей равенства eπi = −1 дает e3πi = −1; таким образом, аргументы πi и 3πi дают одно и то же значение функции, равное −1, подобно тому как −2 и +2 дают при возведении в квадрат одно и то же значение 4. Тогда что же такое ln (−1)? Это πi? Или же 3πi?
Это πi. Чтобы не наживать лишних неприятностей, ограничим мнимую часть значений функции отрезком от −π (не включая) до π (включая). Тогда для всякого ненулевого комплексного числа имеется его логарифм, причем ln (−1) = πi. На самом деле, если использовать обозначения, введенные в главе 11.v, то ln z = ln |z| + iΦ(z), где Φ(z), разумеется, измеряется в радианах. В таблице 13.3 показан «моментальный снимок» логарифмической функции с точностью до шести знаков после запятой. Аргументы здесь изменяются «по умножению» (каждая строка получается умножением 1 + i на предыдущую строку), а значения функции — «по сложению» (всякий раз прибавляется 0,346574 + 0,785398i).
z ln z −0,5i −0.693147 − 1,570796i 0,5 − 0,5i −0,346574 − 0,785398i 1 0 1 + i 0,346574 + 0,785398i 2i 0,693147 + 1,570796i −2 + 2i 1,039721 + 2,356194i −4 1,386295 + 3,141592i −4 − 4i 1,732868 − 2,356194iТаблица 13.3. Логарифмическая функция.
Итак, у нас есть логарифмическая функция. Единственное усложнение заключается в том, что, когда мнимая часть значения функции становится больше π, как это случается при переходе от аргумента −4 к аргументу −4 − 4i, приходится вычитать 2πi, чтобы остаться в нужных пределах (2π радиан равны 360 градусам; мы помним из главы 11.v, что радианы — это просто способ измерения углов, который больше всего любят математики). Но это не причиняет на практике никаких неудобств.
II.Коль скоро имеются показательная и логарифмическая функции от комплексных чисел, нет причин, запрещающих возводить любое комплексное число в любую комплексную степень. Согласно 8-му правилу действий со степенями из главы 5.ii любое вещественное число a равно eln a, а тогда по 3-му правилу ax — это просто-напросто exln a. Нельзя ли распространить эту идею в мир комплексных чисел и сказать, что для любых двух комплексных чисел z и w выражение zw означает просто-напросто ewln z?
Можно, конечно, и именно так и делается. Если пожелать возвести −4 + 7i в степень 2 − 3i, то надо сначала вычислить логарифм числа −4 + 7i, который оказывается равным примерно 2,08719 + 2,08994i. Затем надо умножить это на 2 − 3i, что даст 10,4442 − 2,08169i. И теперь возвести число e в эту степень, что и даст окончательный результат −16793,46 − 29959,40i. Итак,
(−4 + 7i)2 − 3i = −16793,46 − 29959,40i.Ничего сложного! Еще пример: поскольку −1 = eπi, извлечение квадратного корня из обеих частей даст i = eπi/2. И если теперь возвести обе части в степень i, то, снова пользуясь 3-м правилом действий со степенями, получим ii = e−π/2. Заметим, что это вещественное число, равное 0,2078795763….
Поскольку можно возводить любое комплексное число в любую комплексную степень, несложным должно оказаться возведение вещественного числа в комплексную степень. Следовательно, для заданного комплексного числа z можно вычислить 2z, 3z, 4z и т.д. Понятно, к чему идет дело. Можно ли расширить область определения дзета-функции

в мир комплексных чисел? Можно, конечно. С комплексными числами, доложу вам, можно делать что угодно.
III.Поскольку формула для дзета-функции остается бесконечной суммой, возникает вопрос о сходимости. Оказывается, что сумма сходится для любого комплексного числа, вещественная часть которого больше единицы. Математики скажут «в полуплоскости Re(s) > 1», где Re(s) используется для обозначения вещественной части числа s.
Но, как и в случае с дзета-функцией вещественных аргументов, для расширения области определения в те области, где бесконечная сумма не сходится, можно применить некоторые математические уловки. В результате получается полная дзета-функция, область определения которой составляют все комплексные числа за единственным исключением числа s = 1. Там, как мы еще в самом начале убедились при помощи колоды карт (см. главу 1), у дзета-функции нет значения. Везде, кроме этой точки, она имеет единственным образом определенное значение. Имеются, конечно, и такие места, где это значение нулевое. Это мы и раньше знали. Графики из главы 9.iv показывают, что дзета-функция принимает равное нулю значение для всех отрицательных четных чисел −2, −4, −8, …. Мы на них не останавливаемся, потому что, как уже было замечено, они не слишком важны. Это тривиальные нули дзета-функции. Могло ли бы так случиться, что значение дзета-функции равно нулю при некоторых комплексных аргументах? И что, это и будут нетривиальные нули, упоминаемые в Гипотезе? Делайте ваши ставки; но я несколько забежал вперед в нашей истории.

