- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Конструкции, или почему не ломаются вещи - Джеймс Гордон
Шрифт:
Интервал:
Закладка:
Глава 12
Различные виды разрушения при сжатии, или сэндвичи, весла и Леонард Эйлер
По причине слабости натуры нашей не можем всегда не согбенны быть.
Как и следовало ожидать, при действии сил сжатия конструкции разрушаются иначе, чем при растяжении. Когда мы нагружаем твердое тело растяжением, расстояния между образующими его атомами и молекулами увеличиваются. При этом натягиваются и межатомные связи, но они могут растягиваться лишь в ограниченных пределах. Если деформации превышают примерно 20%, химические связи ослабевают и в конце концов исчезают совсем. Хотя в действительности полная картина процесса разрыва твердого тела достаточно сложна, можно, вообще говоря, утверждать, что, когда растяжение какой-то большой части межатомных связей достигнет предельного значения, произойдет и разрушение материала в целом. Нечто подобное происходит и тогда, когда материал разрушается при кручении. Однако при сжатии происходит несколько иное.
Если сжимать твердое тело, то расстояния между его атомами и молекулами будут уменьшаться, а межатомные силы отталкивания в любых нормальных условиях с ростом деформации сжатия будут возрастать почти безгранично. И только в случае, когда действуют огромные гравитационные силы, существующие в некоторых звездах, называемых астрономами белыми карликами, силы отталкивания уже не могут противостоять фантастическим силам гравитационного сжатия, причем с катастрофическими последствиями[97].
Тем не менее множество обычных земных конструкций при сжатии все-таки разрушается. Дело в том, что сжимающие напряжения в любой данной конструкции никогда не могут расти беспредельно, материал или конструкция всегда находит способ избежать этого, просто "выскользнув" из-под нагрузки куда-нибудь в боковом направлении. С энергетической точки зрения конструкции выгодно избавиться от избытка упругой энергии при сжатии с помощью того или иного механизма обмена энергией, удобного в данной конкретной ситуации.
Из-за этого сжатые конструкции обладают весьма прихотливыми свойствами и изучение их разрушения - это изучение способов, какими можно выбраться оттуда, где на тебя давят. Как известно, это можно сделать разными способами. Выбор возможного способа определяется формой, пропорциями и материалом самой конструкции.
О каменной кладке мы говорили уже довольно много. И хотя здания - это по сути своей сжатые конструкции и кладка всегда должна находиться в сжатом состоянии, следует сказать, что от сжатия они не разрушаются никогда. Как ни парадоксально, но они могут разрушиться, только если в них возникнут растягивающие напряжения. При этом у стены появляется бурная тенденция к порождению "шарнирных" точек; поворачиваясь вокруг этих точек, стены рушатся.
Арки - конструкции, гораздо более прочные и надежные, чем стены, но и в них иногда могут образоваться четыре "шарнирные" точки, после чего арка может уменьшить как свою упругую энергию, так и потенциальную энергию, сложившись вначале как механизм и свалившись затем грудой камней. Во всяком случае, согласно расчетам, проводимым нами в гл. 8, существующие напряжения сжатия в каменной кладке фактически очень невелики, они гораздо ниже общепринятого предела прочности материала на сжатие.
Предел прочности на сжатие, или разрушение коротких стержней и колонн при сжатии
Если взять кирпич или небольшой бетонный блок и подвергнуть их действию значительной сжимающей нагрузки (в испытательной машине или любым другим методом), материал в конце концов, разрушится тем способом, который условно называют "разрушением при сжатии". Хрупкие материалы, например камень, кирпич, бетон или стекло, обычно при этом рассыпаются на куски, а иногда и в пыль. Но, строго говоря, это вовсе не разрушение сжатием, так как в действительности оно почти всегда происходит из-за сдвига. Как мы видели в предыдущей главе, сжатие и растяжение образца с необходимостью приводят к появлению напряжений сдвига, действующих под углом 45°, и именно этот сдвиг по наклонным площадкам и служит обычно причиной разрушения коротких образцов при их сжатии.
Как мы уже говорили, практически во всех хрупких материалах существует множество микротрещин, царапин и того или иного рода дефектов. Если даже они не возникли при изготовлении материала, то практически неизбежно появятся потом из-за самых разнообразных причин. Естественно, что эти трещины и царапины в материале имеют всевозможные направления. Значительное число их окажется направленным под углом +45° к напряжению сжатия, то есть они будут более или менее параллельны возникающим напряжениям сдвига (рис. 135).
Рис. 135. Разрушение хрупких материалов (цемент или стекло) при сжатии происходит на самом деле путем сдвига.
Как и в случае растяжения, для этих сдвиговых трещин существует критическая длина по Гриффитсу. Другими словами, трещина данной длины начинает распространяться, когда касательное напряжение достигает некоторого критического значения. Если в хрупком материале, например бетоне, достигаются эти критические условия, то сдвиговые трещины распространяются практически мгновенно, процесс может носить почти взрывной характер. Когда сдвиговая трещина пройдет по диагонали поперек всего образца, две его части начинают скользить относительно друг друга. Образец уже не может больше сопротивляться сжимающей нагрузке, материал разгружается, выделяя большое количество упругой энергии, и именно поэтому, когда хрупкие материалы (стекло, бетон, камень) сжимают или разбивают молотком, разлетаются осколки, которые могут быть опасными. Выделенной энергии деформации часто оказывается достаточно для превращения материала в пыль. Именно это происходит, когда мы толчем кусочки сахара в ступке.
Разрушение сжатием пластичного металла (скажем, масла или пластилина) происходит по аналогичным причинам. Под действием касательных напряжений слои металла начинают проскальзывать[99] по дислокационному механизму. И снова скольжение происходит вдоль плоскостей, расположенных примерно под углом 45° к сжимающей нагрузке, короткий металлический образец расползается, приобретая бочкообразную форму (рис. 136). Благодаря большой работе разрушения пластичного металла вероятность выброса осколков в этом случае невелика и непосредственные следствия разрушения бывают менее опасными и драматичными. Когда мы бьем молотком по головке заклепки или используем для этого гидравлический пресс, мы рассчитываем именно на эту склонность металла расплющиваться при сжатий.
Рис. 136. Разрушение пластичного материала (металла) при сжатии происходит вследствие сдвига, но в этом случае сдвиг приводит к расплющиванию образца.
Материалы типа дерева или искусственных волокнистых композитов, например стеклопластика или углепластика, при сжатии обычно разрушаются иначе. Армирующие волокна под действием сжимающих нагрузок изгибаются все вместе, "коллективно", образуя складку, бегущую поперек образца. Эти складки могут проходить под углом 90° к направлению сжимающих сил или наклонно под различными углами (рис. 137). К сожалению, в композиционных материалах складки часто образуются уже при сравнительно небольших напряжениях, то есть на сжатие эти материалы работают плохо, что следует иметь в виду при использовании их в конструкциях.
Рис. 137. Разрушение волокнистых материалов (дерево или стеклопластик) при сжатии. Поперечная складка (а) под углом 90°приводит к уменьшению объема, а потому возникает только в материалах, содержащих пустоты, например в дереве. Косая складка (б) характерна для композитных материалов, так как ее формирование не требует уменьшения объема.
Сравнение прочности материалов на растяжение и на сжатие
Содержимое многочисленных учебников и справочников - обширные таблицы прочности на разрыв практически всех конструкционных материалов. Как правило, книги эти гораздо более сдержанны в отношении прочности на сжатие. Одна из причин этого в том, что экспериментальные значения прочности при сжатии в большей мере зависят от формы испытуемого образца. Иногда материал оказывается столь чувствительным к ней, что становится почти бессмысленным приводить какие-либо цифры. Хотя обращаться с величинами прочности на сжатие мы обязаны очень осторожно и это оправданно, использование данного понятия все же позволяет лучше постигнуть работу конструкции. Прежде всего мы должны иметь в виду, что на самом деле не существует никакой однозначной зависимости между прочностью материала на сжатие и его прочностью на растяжение[100].

