- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Посвящение в радиоэлектронику - Владимир Поляков
Шрифт:
Интервал:
Закладка:
Когда передающая телевизионная студия сформирует полный телевизионный сигнал, его можно будет передать в эфир. Первые передачи электронного телевидения с высокой четкостью (625 строк разложения изображения) велись на метровых волнах УКВ диапазона. Выделенные каналы сохранились до настоящего времени. Это каналы I–V на частотах 48,5…100 МГц (6,2…3 м).
По мере строительства телецентров во всех крупных городах этих каналов оказалось недостаточно, ведь расположенные рядом телецентры должны работать на разных каналах, иначе на границе областей обслуживания возможны сильные взаимные помехи. Например, если Москва ведет телевизионное вещание в канале I, то ни в Калинине, ни в Рязани, ни в любых других окрестных городах этот канал использовать нельзя, иначе слабый сигнал, приходящий из Москвы, будет создавать помеху. С высокой Останкинской башни телевизионный сигнал может распространятся при благоприятных условиях на расстояние до 300 км.
Выделили еще семь каналов в диапазоне частот 174…230 МГц (1,7… 1,3 м). К настоящему времени и этого оказалось недостаточно, и к 12 каналам на метровых волнах добавили еще два десятка каналов на ДМВ в диапазоне 470…630 МГц (64…47 см). Чем выше частота канала, тем легче передать телевизионный сигнал с широкой полосой. Выше мы определили, что для передачи изображения, содержащего 625 строк и полмиллиона элементов изображения в кадре, нужен спектр частот шириной 6,5 МГц. Но при амплитудной модуляции несущей образуются две боковые полосы и ширина излучаемого спектра может достигнуть 13 МГц. Это слишком много, и специалисты сразу применили очень прогрессивный способ модуляции с подавлением одной боковой полосы. Правда, несущая не подавляется, а для детектирования в приемнике служит не синхронный, а самый обычный диодный детектор, как его часто называют, детектор огибающей. Более того, для уменьшения искажений при детектировании нижняя боковая полоса частот подавляется не полностью, а оставляется ее часть шириной 1,25 МГц, непосредственно примыкающая к несущей.
Посмотрите на изображение спектра излучаемого телевизионного сигнала — там все это показано. На 6,5 МГц выше несущей сигнала изображения расположена несущая звукового передатчика. Звуковое сопровождение передается с частотной модуляцией при девиации ± 50 кГц. Полная ширина радиочастотного спектра телевизионного сигнала получается около 8 МГц.
При передаче столь широкого спектра на метровых волнах мы получаем относительную ширину спектра около 10 %, а на частотах первых телевизионных каналов — даже больше. Это создает определенные трудности в проектировании и передатчиков, и антенн, и приемников: все эти устройства должны быть широкополосными.
Спектр видеосигнала.
Любая неравномерность в передаче телевизионного спектра приводит к ухудшению качества и четкости изображения. На ДМВ относительная ширина полосы частот намного уже и пропустить ее без ослаблений легче. Поэтому и качество телевизионного вещания на ДМВ обычно выше.
Структурная схема телевизионного передатчика несложна. Несущая генерируется высокостабильным задающим генератором. В модуляторе амплитуда несущей изменяется в такт с видеосигналом, поступающим от телекамеры. Ну а перед антенной установлен усилитель мощности, увеличивающий мощность телевизионного сигнала до нескольких десятков, а иногда и сотен киловатт. Впрочем, ввиду ограниченного радиуса действия УКВ передатчиков особенно большие мощности не нужны. Канал звукового сопровождения представляет собой отдельный передатчик меньшей мощности. Лишь в некоторых случаях используют общий усилитель мощности звукового и видеосигналов, который в этом случае должен иметь особенно высокую линейность. Линейность усилителя — это прямо пропорциональная зависимость между амплитудами входного и выходного сигналов. Любая нелинейность приводит к тому, что в спектре выходного сигнала появляются побочные продукты сигналы с частотами, которых во входном спектре не было. Так, например, если во входном спектре присутствовали две частоты — f1 и f2, то в выходном спектре появятся еще и частоты 2f1 — f2 и 2f2 — f1. Это расширит спектр излучения, создаст помехи и ухудшит качество сигнала.
Передатчик изображения.
Еще несколько слов о передатчике звукового сопровождения. Частота его задающего генератора слегка изменяется под действием звукового сигнала. На структурной схеме нарисованы несколько умножителей частоты. Зачем они? Вот зачем. Гораздо удобнее выполнить задающий генератор на сравнительно низкую частоту — в несколько раз ниже излучаемой. Генератор будет работать стабильнее, и не будут влиять наводки мощного сигнала со стороны выходного каскада. Более того, при умножении частоты возрастает и девиация частоты, вызываемая звуковым модулирующим сигналом.
Поясним сказанное примером. Звуковое сопровождение первого телевизионного канала передастся на частоте 56,25 МГц. Сконструируем задающий генератор на частоту 6,25 МГц и промодулируем его звуковым сигналом с девиацией всего ± 5,55 кГц. Затем включим последовательно два утроителя частоты, чтобы получить общий коэффициент умножения в девять раз. В результате на выходной каскад поступит ЧМ сигнал с требуемыми центральной частотой 56,25 МГц и девиацией ± 50 кГц.
Передатчик звука.
Как умножают частоту? Давайте уж не будем подробно разбираться в технических деталях, установим только общий принцип. Если форму синусоидального сигнала сильно исказить, то кроме основной частоты f0 он будет содержать массу гармоник, т. е. колебания с частотами 2f0, 3f0, 4f0 и т. д. Остается выделить нужную гармонику колебательным контуром. А уж исказить форму колебаний очень просто (ломать — не делать!): достаточно выбрать режим обычного усилительного каскада на нелинейной части его характеристики. Если, например, увеличить напряжение смещения, то каскад будет работать «с отсечкой», т. е. усиливать только во время части периода входного сигнала. А остроконечные импульсы тока, протекающего в нагрузке, очень богаты гармониками. Вот вам еще несколько преимуществ частотной модуляции: модулировать сигнал можно в маломощном задающем генераторе, а нелинейные искажения, вносимые последующими каскадами, на качество сигнала не влияют.
Спектральный состав выходных импульсов.
Работа усилительного каскада с «отсечкой» тока.
Особо хотелось рассказать об антеннах передающих телецентров. Зачем строят высокие башни, вроде Останкинской в Москве? Вы уже знаете, что ультракороткие волны распространяются прямолинейно и с высокой башни «дальше видно» — расширяется радиус уверенного приема данного телецентра. Но даже с высокой башни нет никакого смысла излучать сигнал во все стороны. Разумеется, я не имею в виду, что надо излучать на север и не излучать на юг. Совсем нет! В горизонтальной плоскости надо излучать равномерно по всем направлениям. А вот вверх излучать сигнал незачем. И вниз, в землю, тоже. Основную часть мощности сигнала надо посылать вдоль горизонта, где и расположена основная масса, если не сказать, все телезрители со своими приемными антеннами.
Диаграмма направленности передающей телевизионной антенны.
Сформировать узкую диаграмму направленности передающей антенны в направлении горизонта можно. Для этого надо расположить по вертикали одну над другой несколько всенаправленных антенн. Питать антенны следует от общего передатчика через фидеры равной длины. При этом все антенны будут возбуждаться в одной и той же фазе. Посмотрим, как формируется диаграмма направленности.
В направлении горизонта расстояния от каждой из передающих антенн до приемника одинаковы, и все волны приходят в одной и той же фазе. Следовательно, электромагнитные поля складываются в этом направлении. Возьмем другое направление, скажем под углом α вверх. Тогда путь волны от верхней антенны до удаленного наблюдателя будет меньше на Δ = h·sin α, чем от нижней. Здесь h расстояние между антеннами. Если Δ окажется равным половине длины волны, то колебания взаимно скомпенсируются и излучения в этом направлении не будет.
Мы рассмотрели две антенны. Не будем рассматривать N антенн (это сложно, но вполне возможно), а сформулируем вывод: решетка синфазных антенн, расположенных вертикально, излучает преимущественно в горизонтальном направлении, причем ширина главного лепестка диаграммы направленности, выраженная в радианах, примерно равна отношению λ/H, где λ — длина волны, а H — высота решетки из антенн. Таким образом, на высокой мачте можно разместить достаточно большую антенную решетку и сильно сузить луч в направлении горизонта. Не правда ли, нарисованная на этой странице передающая антенна со своей диаграммой направленности очень напоминает маяк, освещающий узким лучом горизонт? В обоих случаях происходит концентрация излучаемой энергии в нужном направлении.

