100 знаменитых изобретений - Владислав Пристинский
Шрифт:
Интервал:
Закладка:
В 1856 г. Бессемер взял патент на продувку раскаленного чугуна воздухом. Сначала он проводил опыты в небольшом лабораторном сосуде. Попытка перейти к экспериментам в более крупных масштабах едва не закончилась катастрофой. Для опытов Бессемер решил использовать сосуд-конвертер (от латинского слова convertere — превращать) высотой чуть более метра, изготовленный из листового железа и выложенный внутри огнеупорным кирпичом. Не прошло и десяти минут после начала продувки, как из отверстия в крышке внезапно вылетел сноп искр, который с каждым мигом все ширился и ширился, пока не превратился в столб пламени. Раздались громкие хлопки, и высоко в воздух начали извергаться расплавленный металл и шлак. Конвертер напоминал вулкан во время извержения. Бессемер мог только наблюдать, понимая, что в любой момент мог начаться пожар или произойти взрыв. К счастью, спустя несколько минут «извержение» прекратилось. Полученный металл оказался ковким железом.
Взволнованный изобретатель повторил эксперимент, приняв, как он полагал, надлежащие меры против огненного фонтана: над отверстием конвертера он подвесил на цепи чугунную крышку. Но при новой продувке вновь началось извержение. Крышка быстро раскалилась, стала плавиться и через несколько минут о ней напоминал лишь обрывок цепи.
Новый способ получения стали многими был встречен скептически. И когда Бессемер решил взять патент на свое изобретение в Германии, прусское патентное ведомство отказало ему, мотивировав свое решение тем, что «никому нельзя запретить продувать воздух через жидкое железо».
В течение нескольких лет английский изобретатель усовершенствовал свой процесс. Бессемерование чугуна – это процесс превращения жидкого чугуна в литую сталь путем продувки сжатым воздухом. Продувка проводится в специальном резервуаре – конвертере. Превращение чугуна в сталь в конвертере происходит благодаря окислению углерода и примесей (кремния, марганца), содержащихся в чугуне, кислородом воздуха. Процесс бессемерования происходит без подвода тепла извне и без применения какого-либо горючего материала: тепло, необходимое для процесса, образуется благодаря окислению железа и его примесей.
Практически бессемерование происходит следующим образом. Чугун в том виде, в каком он изливается из доменной печи, заливается в конвертер – резервуар, похожий на грушу с отверстиями на дне для подвода воздуха. Он укреплен на двух подвижных опорах, по одной с каждой стороны, что позволяет переводить его из горизонтального в вертикальное положение и наоборот.
Наполнив конвертер, его поворачивают в вертикальное положение и через отверстия начинают вдувать воздух, который пузырьками проходит через расплавленный металл. Кислород воздуха при этом приходит в соприкосновение с каждой частицей чугуна и в результате соединяется с углеродом, находящимся в чугуне. Когда процесс закончен, конвертер переводят в горизонтальное положение и прекращают вдувание воздуха. После окончания процесса в конвертере образуется железо, в которое затем добавляют строго определенную дозу примеси, содержащей углерод, поддерживающий дальнейший процесс окисления железа. В результате в конвертере образуется сталь, содержащая требуемый процент углерода.
Процесс бессемерования протекает чрезвычайно быстро, продолжительность его не превышает 15 минут. Количество перерабатываемого чугуна и пропускная способность конвертера весьма велики: в конвертере 10–15 тонн чугуна превращается в железо или сталь в течение 10 минут. В пудлинговой печи на это уходило несколько дней. По качеству бессемеровская сталь во многом превосходила пудлинговое железо.
Признание пришло к Бессемеру в 1862 г.: на Всемирной выставке в Лондоне с успехом демонстрировалась разнообразная продукция из бессемеровской стали. В 1867 г. на Всемирной выставке в Париже изобретатель был удостоен Большой золотой медали. В 1871 г. Бессемер был избран президентом вновь созданного британского Института железа и стали, а в 1879 г. стал членом Лондонского королевского общества.
Следует отметить, что наряду с очевидными достоинствами бессемеровский конвертер имел и недостатки. Основной из них заключался в том, что далеко не любой чугун можно было в конвертере переделывать в сталь. Если для выплавки чугуна использовались железные руды, богатые фосфором, то последний переходил в чугун, а затем и в сталь. В результате сталь становилась хрупкой и не находила применения. В конвертере нельзя переплавлять железный лом или твердый чугун, т. к. не хватает тепла, чтобы расплавить твердые куски металла. К тому же в конвертере можно получать лишь сталь, идущую на обычные нужды.
Один из недостатков конвертера исправил соотечественник Бессемера Сидни Томас. Он подошел к конвертерной плавке с точки зрения химика. На миниатюрном конвертере, вмещавшем около 2,5 кг чугуна, Томас вместе с двоюродным братом начал производить опыты по удалению фосфора из расплавленного металла. Для этого необходимо, чтобы шлаки были не кислыми, а основными, т. е. состоящими из основных окислов. Это требовало, чтобы и огнеупорная футеровка конвертера была основной, иначе она разъедалась бы шлаком и выходила бы из строя. После многочисленных опытов Томас остановился на огнеупорной футеровке, состоящей из извести, смешанной с жидким стеклом. Первые опыты были успешными, и Томас уговорил владельцев завода в Бленавоне, где работал его двоюродный брат, провести опытные плавки. После нескольких десятков плавок Томасу удалось снизить содержание фосфора в стали до сотых долей процента.
Одна из причин его успеха заключалась в следующем: примеси в чугуне выгорали в строгой очередности, зависящей от химических свойств кислорода. Первым выгорал кремний, затем марганец, частично железо. Потом доходит очередь до углерода. Как только запасы углерода иссекают, конвертерный костер начинает угасать. В этот момент металлурги прекращали продувку, считая, что больше гореть нечему, кроме железа. При бессемеровском процессе действительно не стоило продолжать продувку, но если требовалось очистить металл от фосфора, то торопиться не следовало. К этому времени фосфор в металле оставался практически в том же количестве. Томас решил продолжать продувку. И выяснилось, что фосфор сгорает с большим тепловым эффектом, почти не уступая кремнию. В 1877 г. Томас взял патент на один из вариантов технологии, связанной с удалением фосфора, и продал его, чтобы продолжать опыты. Он искал наиболее удачный материал для футеровки и постепенно пришел к выводу, что лучше всего подходит хорошо обожженный доломит. Стенки из него выдерживали воздействие извести, необходимой для создания основного шлака, поглощавшего выделяющийся из металла фосфор.
В 1878 г. Томас берет патент на свое изобретение. Спустя несколько дней после этого на сессии британского Института железа Томасу даже не дали слова, чтобы он мог рассказать о своем изобретении. Среди участников собрания был и Бессемер. Несмотря ни на что, Томас шлифовал свою технологию в промышленных условиях, и вскоре его ждал триумф. Уже после его смерти в конце XIX в. томасовский конвертер по масштабам выплывки стали уступал лишь «старшему брату» – бессемеровскому конвертеру.
Но постепенно роль конвертеров в выплавке стали начала понижаться. До середины XX в. основная нагрузка приходилась на мартеновские печи. Но конвертеры восстановили утраченные было позиции благодаря применению кислородного дутья. Эту идею выдвинул еще в 1875 г. Д. К. Чернов. По его мнению, это должно было повысить температуру металла и сократить время процесса, а также затраты на воздуходувную машину. Но реализовать эту идею стало возможным лишь тогда, когда удалось создать установки для сжижения атмосферного воздуха и получения из него кислорода. В 1933 г. советский ученый Н. И. Мозговой приступил к экспериментам по продувке жидкого чугуна чистым техническим кислородом. В 1950-е годы во многих странах были построены кислородные конвертеры. Кислородное дутье имеет серьезные преимущества: при сохранившейся высокой производительности постройка кислородно-конвертерных цехов обходится дешевле. Кислородное дутье повысило температуру в конвертере, что позволило перерабатывать большие объемы металлолома. Теперь в конвертерах можно было выплавлять легированную сталь многих марок, что раньше считалось привилегией электропечей. Сегодня кислородно-конвертерным способом выплавляется более половины всей производимой в мире стали.
Несмотря на громадное значение бессемеровской стали, проблема улучшения качества металла осталась не решенной. А специальное машиностроение требовало массового производства именно высококачественной стали. Кроме того, дешевая бессемеровская сталь вытеснила старый пудлинговый металл, и появились крупные нереализованные запасы последнего. Требовалось найти пути передела его в сталь.