Рассказ предка. Паломничество к истокам жизни - Ричард Докинз
Шрифт:
Интервал:
Закладка:
Многократное копирование является абсолютно точным лишь в теории. Писцы ошибались и иногда даже могли “поправлять” оригинал, записывая то, что, как они думали (разумеется, вполне искренне), имелось в виду. Самый известный пример, указанный немецкими теологами XIX века, – подтасовка событий в Новом Завете с целью согласовать их с пророчествами Ветхого Завета.
Помимо фальсификации, копирование подвержено обычным ошибкам. В любом случае, письменность не может рассказать о событиях до ее изобретения (около 5 тыс. лет назад). Условные обозначения, счетная символика и рисунки немного старше: возможно, им несколько десятков тысяч лет. Однако такие промежутки – пустяки в масштабе эволюционного времени.
К счастью, в отношении эволюции мы располагаем иной воспроизводимой информацией, которая претерпела невообразимо большое число случаев копирования и которую, позволив себе небольшую поэтическую вольность, мы можем расценивать как аналог письменного текста. Эти исторические записи с поразительной точностью воспроизводились сотни миллионов раз благодаря тому, что в их основе, как и в основе письменности, лежит самоупорядочивающийся алфавит. Информация ДНК передается с потрясающей точностью. Отдельные атомы в ней непрерывно меняются, однако информация, которую они кодируют, копируется в течение миллионов, даже сотен миллионов лет. Эти записи мы можем прочитать, используя возможности современной молекулярной биологии: она позволяет выявить последовательность “букв” ДНК или последовательность аминокислот белка, которую кодирует ДНК. Или, в еще более косвенном методе, как бы через тусклое стекло, мы можем рассмотреть эти записи, изучая эмбриологические “продукты” ДНК: форма тела, органы, их взаимное расположение. Мы не нуждаемся в ископаемых, чтобы заглянуть в прошлое. Поскольку ДНК меняется очень медленно, история как бы впечатана в тела современных животных и растений.
Сообщения ДНК записаны с помощью настоящего алфавита. Как и римское, греческое или кириллическое письмо, “алфавит” ДНК представляет собой набор символов. Ни один символ сам по себе не имеет смысла, однако из них можно составлять осмысленные сообщения неограниченной сложности и длины. В английском алфавите 26 букв, в греческом – 24, в “алфавите” ДНК – всего четыре. В ДНК используются трехбуквенные “слова” из словаря, ограниченного 64 “словами” – кодонами. Некоторые кодоны являются синонимами, поэтому говорят, что генетический код является вырожденным.
Шестьдесят четыре “слова” соответствуют 21 значению: 20 аминокислот плюс универсальный “знак препинания”. Человеческие языки многочисленны и изменчивы, и в наших словарях десятки тысяч слов. “Словарь” ДНК универсален и консервативен (в очень редких случаях наблюдаются незначительные вариации). Двадцать аминокислот образуют последовательности, обычно из нескольких сотен “слов”, которые определяют последовательность молекул белка. И хотя число “букв” ограничено четырьмя, а число кодонов – 64, число белков, которые можно записать с помощью последовательностей кодонов, неограниченно. Подсчитать их невозможно. “Предложение” из кодонов, определяющих одну молекулу белка, образует опознаваемую единицу, которую называют геном. Гены не отделяются от своих соседей (будь то другие гены или бессмысленные повторы) какими-либо разделителями, кроме содержащихся в их последовательностях. В этом отношении они напоминают ТЕЛЕГРАММЫ ЗПТ В КОТОРЫХ ВМЕСТО ЗНАКОВ ПРЕПИНАНИЯ СЛОВА ЗПТ ХОТЯ И В ТЕЛЕГРАММАХ ЕСТЬ ПРОБЕЛЫ МЕЖДУ СЛОВАМИ ЗПТ КОТОРЫХ НЕТ В ДНК ТЧК.
ДНК отличается от письменного языка тем, что в ней “островки смысла” разделяет море бессмысленных последовательностей, которые не транскрибируются. В ходе транскрипции “целые” гены собираются из осмысленных экзонов, разделенных бессмысленными интронами, последовательность которых при считывании пропускается. И даже “значащие” участки ДНК во многих случаях не считываются. Предположительно они представляют собой уже не нужные копии некогда использовавшихся генов, которые остались в ДНК, как черновики на жестком диске. Мы еще вернемся к сравнению генома с жестким диском, нуждающимся в чистке.
Итак, молекулы ДНК погибших животных не сохраняются. Вечно может храниться лишь информация в ДНК – благодаря непрерывному многократному копированию. Сюжет фильма “Парк юрского периода”, хотя и довольно разумный, все же расходится с фактами. Теоретически недолгое время после попадания в янтарь кровососущее насекомое может сохранять “инструкции” ДНК по воссозданию динозавра. Но, к сожалению, после смерти организма ДНК в его теле и в крови, которой он питался, может храниться в неповрежденном виде всего несколько лет – а в некоторых мягких тканях и вовсе дней. ДНК не убережет и фоссилизация.
Даже глубокое замораживание сохраняет ДНК лишь ненадолго. Пока я пишу эту книгу, ученые выкапывают мамонта из сибирской вечной мерзлоты в надежде на то, что сумеют выделить ДНК в количестве, достаточном для клонирования в матке слонихи. Однако, боюсь, это тщетная надежда – несмотря на то, что мамонт умер всего несколько тысяч лет назад. К самым древним останкам, из которых можно выделить читаемую ДНК, относятся останки неандертальца. Вообразите, какая шумиха поднимется, если кто-нибудь сумеет его клонировать. Но, к несчастью, ДНК возрастом 30 тыс. лет можно восстановить лишь фрагментарно. Для растений, сохранившихся в вечной мерзлоте, рекорд составляет около 400 тыс. лет.
Важная особенность ДНК заключается в том, что, пока цепь жизни не прервется, закодированная в ДНК информация будет копироваться в новой молекуле еще до разрушения старой. Поэтому информация живет гораздо дольше молекул. Она возобновляется посредством копирования, а поскольку копирование для большинства “букв” является точным, теоретически она может сохраняться неопределенно долго. Значительная доля информации ДНК наших предков дошла до нас в неизменном виде, пережив в некоторых случаях сотни миллионов лет.
Таким образом, информация в ДНК – невероятно щедрый подарок, который природа преподнесла историкам. Какой историк мог надеяться, что каждая особь каждого вида носит в теле подробный документ! Более того, в этом тексте происходят незначительные случайные изменения, которые достаточно редки, чтобы не нарушить точность документа, но при этом достаточно часты, чтобы создать метки. Но и это еще не все! Текст не произволен. В книге “Расплетая радугу” я объяснял, почему с точки зрения эволюции ДНК животного можно считать “генетической ‘Книгой Мертвых’”. Из теории эволюции следует, что признаки любого животного или растения – его морфология, наследственное поведение, химия его клеток – представляют собой закодированные сообщения о мире, в котором жили его предки: о пище, которой они питались, о хищниках, от которых убегали, о климате, в котором они жили, о партнерах, с которыми спаривались. Это сообщение записано в ДНК, которая проходит ряд фильтров естественного отбора. Когда мы научимся читать эти сообщения, ДНК дельфина, возможно, однажды подтвердит то, что мы уже знаем из его анатомии и физиологии: что его предки жили на суше. Около 300 млн лет назад предки наземных позвоночных животных (включая предков дельфинов) вышли из моря, где они обитали с начала времен. В ДНК, несомненно, это записано – нужно лишь уметь читать. Все признаки современного животного (ДНК, а также конечности и сердце, мозг и цикл размножения) можно считать архивом, даже если это многократно переписанный палимпсест.
“Хроника” ДНК – подарок для историка. Однако прочитать ее непросто, а интерпретация требует глубоких знаний. Для надежности информацию ДНК можно сочетать с третьим методом исторической реконструкции – триангуляцией.
Триангуляция
Лингвистам часто бывает необходимо восстановить историю языков. В тех случаях, когда сохранились письменные источники, это довольно просто. Специалист по исторической лингвистике может использовать второй из методов реконструкции, изучая “биографию” слов. Современный английский язык эволюционировал из древнеанглийского языка через среднеанглийский, и его историю можно проследить с помощью непрерывной литературной традиции, включающей сочинения Шекспира и Чосера, а также “Беовульф”. Однако ясно, что речь возникла раньше, чем письменность (а у многих языков и сейчас нет письменной формы). Для изучения ранней истории мертвых языков лингвисты используют вариант метода, который я называю триангуляцией. Они сравнивают современные языки и объединяют их в группы в составе семей. Романская, германская, славянская, кельтская языковые группы объединяются с некоторыми другими в индоевропейскую языковую семью. Лингвисты считают, что праиндоев-ропейский был настоящим языком, на котором говорило конкретное племя около 6 тыс. лет назад, и даже надеются реконструировать этот язык, экстраполируя в прошлое сходные особенности языков-потомков. Таким же образом реконструирована история других языковых семей, например алтайской, дравидийской и уральской. Некоторые оптимистичные (и склонные к полемике) лингвисты идут еще дальше, объединяя языковые семьи, и считают, что могут реконструировать элементы гипотетического праязыка, на котором люди якобы говорили 12–15 тыс. лет назад.