- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (КИ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Основы теории цепных реакций разработаны и экспериментально подтверждены в исследованиях советского ученого Н. Н. Семенова и его школы. В СССР успешно изучаются скорость и механизм важнейших групп цепных процессов: полимеризации, крекинга, окисления. На базе цепной теории окислительных реакций разработаны новые высокоэффективные технологические процессы получения важных химических продуктов (в частности, мономеров для получения полимеров) путем окисления нефтяного сырья и углеводородных газов. Цепная теория процессов ингибированного окисления позволяет предотвращать окислительную порчу (старение) полимеров, смазочных масел и бензинов, пищевых продуктов и лекарственных препаратов. Ингибиторы окисления, или стабилизаторы окислительных процессов (см. Ингибиторы химические ), — это важнейшие представители малотоннажных продуктов органического синтеза.
Кинетика ионных реакций. Значительное число реакций в растворах протекает при участии ионов. Скорость ионных реакций сильно зависит от растворителей, так как в разных растворителях молекулы в разной степени диссоциированы на ионы. Энергия активации реакции ионов с молекулами невелика: заряд иона снижает энергию активации. При изучении кинетики реакций в растворах учитывают влияние полярных групп, наличие большого межмолекулярного взаимодействия, влияние растворителя и т.п.
Кинетика гетерогенных каталитических реакций. Для реакций газов и жидкостей, протекающих у поверхности твёрдых тел (см. Катализ ), по-видимому, имеют место те же 3 основных типа химических превращений, которые были рассмотрены для гомогенных процессов, т. е. простые, радикально-цепные и ионные реакции. Различие заключается лишь в том, что в соответствующие кинетические уравнения входят концентрации реагирующих веществ в поверхностном адсорбционном слое (см. Адсорбция ). Наблюдаются разные кинетические зависимости, которые обусловлены характером адсорбции исходных веществ и продуктов реакции на поверхности. Основной суммарный кинетический эффект катализатора заключается в снижении энергии активации реакции. Важной проблемой в области гетерогенного катализа является предвидение каталитического действия. Представления и методы, свойственные теории гетерогенного катализа, все больше сближаются с областью гомогенного катализа жидкофазных реакций, особенно при использовании в качестве катализаторов комплексных соединений переходных металлов. Выясняется механизм действия биологических катализаторов (ферментов), особенно с целью создания принципиально новых высокоэффективных катализаторов для химических реакций.
Советскими и зарубежными учёными успешно разрабатываются и многие другие актуальные проблемы К. х., например, применение квантовой механики к анализу элементарного акта реакции; установление связей между строением веществ и кинетическими параметрами, характеризующими их реакционную способность; изучение кинетики и механизма конкретных сложных химических реакций с применением новейших физических экспериментальных методов и современной вычислительной техники; использование кинетических констант в инженерных расчётах в химической и нефтехимической промышленности.
Лит.: Семенов Н. Н., О некоторых проблемах химической кинетики и реакционной способности, 2 изд., М., 1958; Кондратьев В. Н., Кинетика химических газовых реакций, М., 1958; Эмануэль Н. М., Кнорре Д. Г., Курс химической кинетики, 2 изд., М., 1969; Бенсон С., Основы химической кинетики, пер. С англ., М., 1964: Эмануэль Н. М., Химическая кинетика, в сборнике: Развитие физической химии в СССР, М., 1967.
Н. М. Эмануэль.
Кинетическая теория газов
Кинети'ческая тео'рия га'зов, раздел теоретической физики, исследующий статистическими методами свойства газов на основе представлений о молекулярном строении газа и определенном законе взаимодействия между его молекулами. Обычно под К. т. г. Понимается теория неравновесных процессов в газах, а теория равновесных состояний относится к равновесной статистической механике. Область применения К. т. г. — собственно газы, газовые смеси и плазма. Основы К. т. г. были заложены во 2-й половине 19 в. в работах Л. Больцмана .
Газ представляет собой простейшую по сравнению с жидкостью и твердым телом систему. Среднее расстояние между молекулами газа много больше их размеров. Так как силы взаимодействия между электрически нейтральными атомами являются очень короткодействующими (то есть очень быстро убывают с увеличением расстояния между частицами и на расстояниях в несколько молекулярных диаметров практически уже не сказываются), то взаимодействие молекул происходит лишь при их непосредственном сближении — при столкновениях. Время столкновения гораздо меньше времени свободного пробега — времени между двумя последовательными столкновениями молекулы. Вследствие этого большую часть времени молекулы газа движутся свободно.
В К. т. г. наблюдаемые макроскопические эффекты (давление, диффузия , теплопроводность и т.д.) рассматриваются как средний результат действия всех молекул исследуемого газа. Для вычисления этих средних Больцман ввёл функцию распределения f (n, r, t ), зависящую от скоростей n и координат r молекул газа и времени t. Произведение f (n, r, t )Dn Dr даёт среднее число молекул со скоростями, лежащими в интервале от n до n +Dn , и координатами в интервале от r до r + Dr . Функция распределения f подчиняется кинетическому уравнению Больцмана. В этом уравнении изменение f со временем рассматривается как результат движения частиц, действия на них внешних сил и парных столкновении между частицами. Уравнение Больцмана применимо лишь для достаточно разреженных газов. В состоянии статистического равновесия при отсутствии внешних сил функция распределения зависит только от скоростей молекул и называется Максвелла распределением .
Основная задача К. т. г. — определение (из уравнения Больцмана) вида функции распределения f , так как знание f (n, r, t ) позволяет рассчитать средние величины, характеризующие состояние газа и процессы в нём, — среднюю скорость частиц, коэффициенты диффузии, вязкости , теплопроводности и др. (см. Кинетика физическая ). Методы решения кинетического уравнения Больцмана были разработаны английскими учёными С. Чепменом и Д. Энскогом. уравнение Больцмана в частном случае отсутствия внешних сил описывает эволюцию системы к состоянию равновесия.
В ионизированных газах (плазме) частицы взаимодействуют друг с другом посредством кулоновских сил, медленно убывающих с расстоянием. Для таких сил нельзя говорить о парных столкновениях, так как друг с другом взаимодействует сразу большое число частиц. Но и в этом случае можно получить кинетическое уравнение (оно называется уравнением Ландау), если учесть, что в подавляющем числе случаев обмен импульсами (количеством движения) при столкновении частиц мал. Если столкновениями вообще можно пренебречь, то существенную роль будут играть кулоновские силы, действующие на данную частицу со стороны всех остальных частиц системы (т. н. приближение самосогласованного поля ). В этом случае для плазмы справедливо кинетическое уравнение Власова (см. Плазма ). Наиболее последовательные и эффективные методы вывода кинетических уравнений на основе динамики систем из большого числа частиц были разработаны Н. Н. Боголюбовым .
Лит.: Больцман Л., Лекции по теории газов, пер. с нем., М., 1953; Чепмен С., Каулинг Т., Математическая теория неоднородных газов, пер. с англ., М., 1960; Боголюбов Н. Н., Проблемы динамической теории в статистической физике, М. — Л., 1946; Силин В. ГГ., Введение в кинетическую теорию газов, М., 1971; Коган М. Н., Динамика разреженного газа, М., 1967: Некоторые вопросы кинетической теории газов, пер. с англ., М., 1965; Климентович Ю. Л., Статистическая теория неравновесных процессов в плазме, М., 1964; Зоммерфельд А., Термодинамика и статистическая физика, пер. с нем., М., 1955; Кикоин И. К., Кикоин А. К., Молекулярная физика, М., 1963, гл. 1 и 2.
Г. Я. Мякишев.
Кинетическая энергия
Кинети'ческая эне'ргия, энергия механической системы, зависящая от скоростей движения её точек. К. э. Т материальной точки измеряется половиной произведения массы m этой точки на квадрат её скорости u, т. е. Т = 1 /2 mu 2 . К. э. механической системы равна арифметической сумме К. э. всех её точек: Т = S1 /2 mk u2 k . Выражение К. э. системы можно ещё представить в виде Т = 1 /2 Muc 2 + Tc, где М — масса всей системы, uc — скорость центра масс, Tc — К. э. системы в её движении вокруг центра масс. К. э. твёрдого тела, движущегося поступательно, вычисляется так же, как К. э. точки, имеющей массу, равную массе всего тела. Формулы для вычисления К. э. тела, вращающегося вокруг неподвижной оси, см. в ст. Вращательное движение .

