Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Прочая научная литература » Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение - Митио Каку

Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение - Митио Каку

Читать онлайн Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение - Митио Каку

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 45 46 47 48 49 50 51 52 53 ... 94
Перейти на страницу:

В свою очередь, это вдохновило поэта Иэна Буша на следующие строки:

Ты мигай, звезда ночная!Где ты, что ты – я-то знаю,Спектроскоп мне не соврет:Ты – горящий водород{82}.

Таким образом, хотя запасы энергии, необходимые для полетов к звездам в ракете, по-прежнему остались недосягаемыми для Конта (как и для любого современного ученого), решающий шаг в исследованиях не потребовал затрат энергии. Ключевую роль сыграло следующее наблюдение: сигналов, исходящих от звезд, а именно их излучения, достаточно, чтобы решить задачу и без непосредственных измерений. Точно так же можно надеяться, что сигналов планковской энергии (возможно, от космического излучения или пока еще неизвестного источника) окажется достаточно для исследования десятого измерения, следовательно, прямые измерения в огромных ускорителях частиц не понадобятся.

Еще один пример «непроверяемой» идеи – существование атомов. В XIX в. атомистическая гипотеза сыграла решающую роль в понимании законов химии и термодинамики. Однако многие физики отказывались верить в существование атомов, считая их всего лишь математическим приемом, по случайности дающим точное описание мира. К примеру, философ Эрнст Мах не верил в существование атомов и рассматривал их только как инструмент для вычислений. (Даже сегодня мы не в состоянии получить изображение атома – из-за принципа неопределенности Гейзенберга, хотя косвенные методы решения этой задачи уже существуют.) Но в 1905 г. Эйнштейн обнародовал убедительное, хоть и косвенное, свидетельство существования атомов, показав, что броуновское движение (т. е. хаотичное движение пылинок, находящихся в жидкости во взвешенном состоянии) можно объяснять как беспорядочные столкновения частиц и атомов в жидкости.

По аналогии можно рассчитывать на экспериментальное подтверждение физики десятого измерения с помощью косвенных методов, которые пока еще не открыты. Вместо фотографий объекта нам, вероятно, придется довольствоваться фотографиями его «тени». Может быть, косвенный подход будет заключаться в тщательном изучении данных о низких энергиях, полученных в ускорителе частиц, а также представлять собой попытки выяснить, оказывает ли физика десятимерного пространства какое-либо влияние на эти данные.

Третьей непроверяемой идеей в физике была гипотеза о существовании неуловимого нейтрино.

В 1930 г. физик Вольфганг Паули выдвинул гипотезу о новой невидимой частице нейтрино, чтобы учесть недостающий энергетический компонент в некоторых экспериментах с радиоактивностью, в которых, казалось, нарушался закон сохранения материи и энергии. Но Паули понял, что нейтрино почти невозможно обнаружить экспериментальным путем, поскольку они взаимодействуют с материей очень слабо и редко. К примеру, если бы нам удалось изготовить цельный свинцовый брус протяженностью несколько световых лет от нашей Солнечной системы до альфы Центавра и поместить его на пути пучка нейтрино, для некоторых из них даже такая преграда оказалась бы преодолимой. Нейтрино способны проходить сквозь Землю так, словно ее не существует, мало того – триллионы нейтрино, излучаемых Солнцем, постоянно проникают сквозь наше тело даже по ночам. Паули признавал: «Я совершил непростительный грех – предположил существование частицы, которую не обнаружат никогда»{83}.

Нейтрино настолько неуловимы и невыявляемы, что они даже побудили Джона Апдайка написать стих под названием «Космическая наглость»:

Нейтрино, крохотные тени,Отринув массу и заряд,Не признают закон общений,Взаимодействий и преград.Они по всей Вселенной шарят,Не поступаясь прямизной.Для них – пустой надутый шарикТрилльоннотонный шар земной.Ничто не сдвинув и не тронув,Они проходят сквозь него –Так сквозь стекло скользят фотоны,Так пыль проносит сквозняком.Ни стен для них, ни пьедесталов.Они способны осадитьХолодную закалку сталиИ жаркой меди звон и прыть.Они летят таким карьером,Что и не снился жеребцам,Поверх всех классовых барьеровВторгаясь в тело мне и вам.Их суд немыслимо высокий,Их приговор неотвратим,Он шлет на головы потокиНеощутимых гильотин.Ныряя где-нибудь в Евфрате,Они уходят в глубину,Чтобы пронзить из-под кроватиНьюйоркца и его жену.Средь ночи протыкать перину!Вы скажете: вот молодцы!А я считаю, что нейтрино –Космические наглецы[16]{84}.

Хотя когда-то нейтрино по причине слабого взаимодействия с другой материей, считали совершенно непроверяемой теорией, сегодня мы регулярно получаем пучки нейтрино в ускорителях частиц, проводим эксперименты с нейтрино, которые испускает атомный реактор, и выявляем их присутствие в шахтах глубоко под землей. (Когда в 1987 г. ослепительная сверхновая звезда озарила небо в Южном полушарии, физики заметили резкий всплеск нейтрино, проходящих через детекторы глубоко в шахтах. Так впервые детекторы нейтрино были применены для проведения важных астрономических измерений.) Всего за три десятилетия нейтрино прошли путь от идеи, которую невозможно проверить, до ценных помощников современной физики.

Проблема в теории, а не в экспериментах

Если рассматривать историю науки за долгий период времени, можно предположить, что основания для оптимизма все-таки есть. Виттен убежден, что когда-нибудь наука докопается и до планковской энергии. Он заявляет:

Отличить простые вопросы от сложных не всегда бывает легко. В XIX в. вопрос о том, почему вода закипает при 100º, считался неразрешимым. Если бы кто-нибудь сказал физику из XIX в., что в XX в. эту температуру можно будет просто вычислить, он счел бы услышанное сказкой… Квантовая теория поля настолько сложна, что никто до конца в нее не верил на протяжении 25 лет.

По мнению Виттена, «удачные идеи всегда получают подтверждение»{85}.

Астроном Артур Эддингтон даже задавался вопросом, не преувеличивают ли ученые значимость проверки любых предположений. Он писал: «Ученые обычно заявляют, что убеждения должны строиться на наблюдениях, а не на теориях… Я никогда не сталкивался с кем-либо, кто следует этому на практике… Наблюдений недостаточно… теория в значительной мере определяет убеждения»{86}. Нобелевский лауреат Поль Дирак выразился еще прямее: «Красота уравнения гораздо важнее соответствия эксперименту»{87}. Или, говоря словами ученого из ЦЕРНа Джона Эллиса, «как было написано на обертке конфеты, которая попалась мне несколько лет назад, „в этом мире только оптимисты добиваются хоть чего-нибудь“». Но несмотря на внушающие некоторый оптимизм доводы, ситуация с экспериментами удручает. Я согласен со скептиками в том, что максимум, на который мы можем рассчитывать, – косвенная проверка десятимерной теории в XXI в. Дело в том, что в конечном счете это теория сотворения, поэтому ее проверка неизбежно предусматривает частичное воспроизведение Большого взрыва в лабораторных условиях.

Лично я не считаю, что нам придется ждать целый век, пока наши ускорители, космические зонды и счетчики частиц космического излучения станут достаточно мощными, для того чтобы получить косвенные подтверждения существования десятого измерения. Спустя некоторое время, явно еще при жизни нынешних физиков, кому-то хватит интеллекта либо подтвердить, либо опровергнуть десятимерную теорию с помощью струнной теории поля или других непертурбативных уравнений. Таким образом, это проблема теоретического, а не экспериментального свойства.

Если предположить, что какой-нибудь талантливый физик решит задачу струнной теории поля и выведет из нее известные свойства нашей Вселенной, останется практическая проблема: когда мы сумеем использовать возможности теории гиперпространства. Есть два варианта:

1. Мы дождемся, когда наша цивилизация освоит энергии, в триллионы раз превосходящие те виды, которые мы можем получить сегодня.

2. Мы встретим представителей внеземных цивилизаций, владеющих искусством управления гиперпространством.

Напомним: понадобилось около 70 лет (между появлением работ Фарадея и Максвелла и работ Эдисона и его коллег), чтобы приступить к использованию электромагнитного взаимодействия в практических целях. Однако современная цивилизация во многом зависит от овладения этой силой. Ядерное взаимодействие было открыто почти на рубеже веков, но даже теперь, 80 лет спустя, у нас нет способов надежно управлять им с помощью термоядерных реакторов. Следующий скачок – обуздание силы единой теории поля – потребует гораздо более значительного скачка в развитии нашей техники и технологии и, вероятно, будет иметь еще более значительные последствия.

1 ... 45 46 47 48 49 50 51 52 53 ... 94
Перейти на страницу:
На этой странице вы можете бесплатно скачать Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение - Митио Каку торрент бесплатно.
Комментарии