- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Математика. Поиск истины. - Клайн Морис
Шрифт:
Интервал:
Закладка:
Но если физическое понимание электромагнитных явлений отсутствует, а наша способность рассуждать о них, пользуясь физическими понятиями, весьма ограниченна, то какова в этом случае природа нашего понимания электромагнитных реалий? На чем мы основываемся, утверждая, что нам удалось овладеть электромагнитными явлениями? Математические законы — всего лишь средства для нащупывания, открытия и использования этой обширной области реального мира; математические законы — единственное знание, которым человеческий разум располагает о загадочных явлениях электромагнетизма. И хотя такой ответ вряд ли удовлетворит человека, не посвященного в эти «дельфийские» таинства наших дней, современные ученые приемлют его. Столкнувшись с многочисленными загадками природы, современный ученый не может не испытывать чувства радости, если их удается «похоронить» под грузом математических символов, причем совершить погребение столь тщательно, что многие последующие поколения ученых не в состоянии обнаружить вход в «гробницу».
На примере теории электромагнитного поля Максвелла мы сталкиваемся с поразительным фактом: одно из величайших достижений физической теории оказывается почти целиком математическим. Некоторые формальные выводы этой теории, такие, как индуцирование тока в проводниках или прием сигнала за тысячи километров от источника, подтверждаются нашим чувственным опытом, но суть теории сама по себе остается чисто математической.
В какой-то мере мы уже были подготовлены к столь необычному повороту событий. Ознакомившись с работами Ньютона по тяготению, мы задались вопросом: что такое тяготение и как оно действует? Обнаружилось, что у нас нет физического понимания действия гравитации. Мы располагаем только математическим законом, дающим количественное описание силы тяготения, и, используя этот закон и законы движения, можем предсказывать явления, поддающиеся экспериментальной проверке. Но сущность понятия гравитации скрыта от нас.
Мы видим также, что центральным стержнем наиболее совершенных физических теорий является математика, точнее несколько формул и следствий из них. В основе каждой физической теории лежат прочные и четкие математические принципы. Наши теоретические умозрительные построения выходят за рамки интуитивных и чувственных восприятий. Пользуясь и теорией гравитации Ньютона, и теорией электромагнитного поля Максвелла, мы вынуждены признаться в незнании основных механизмов и возложить на математику описание того, что нам известно. Такое признание, возможно, наносит удар по нашему самолюбию, но вместе с тем способствует пониманию истинного положения вещей. Именно теперь мы можем по достоинству оценить мысль, высказанную Уайтхедом: «Несомненный парадокс состоит в том, что именно предельные абстракции [математики] служат теми истинными орудиями, посредством которых мы управляем нашим пониманием конкретных фактов».
В этом парадоксе и заключается своеобразие математики, ибо она позволяет открывать явления, которые, будучи взятыми отдельно от человеческого разума, отнюдь не очевидны, хотя и вполне реальны. Уайтхед сказал как-то, что выделять математику в человеческом мышлении — все равно что вместо Гамлета выдвигать на первое место в трагедии Шекспира Офелию, а не Гамлета: «Офелия, бесспорно, очаровательна и немного безумна, но Гамлет — все же центральный персонаж».
В 1931 г. Эйнштейн, характеризуя изменение, внесенное в наше представление о физической реальности работами Максвелла, назвал его «наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона» ([7], с. 138).
VIII
Прелюдия к теории относительности
Здравый смысл — это толща предрассудков, успевших отложиться в нашем сознании к восемнадцати годам.
Альберт ЭйнштейнАксиома — это предрассудок, освященный тысячелетиями.
Эрик Т. БеллКак и «чистые» математики, физики-теоретики на рубеже XX в. были преисполнены гордости за достигнутые успехи, и состояние физических теорий не вызывало у них беспокойства. Разве не они открыли совершенно новый мир — мир электромагнитных явлений, сулящий ускорить и расширить культурный и технический прогресс человечества, существенно усовершенствовать средства связи? Возможно, что такому безмятежному, не омрачаемому критикой состоянию теоретической физики в какой-то мере способствовала гипотеза эфира, который на протяжении двух веков считался средой, где якобы распространяется свет и электромагнитное излучение других видов.
Но безмятежное спокойствие, царившее в физике на рубеже нашего века, было затишьем перед бурей. Когда восторги, вызванные замечательными достижениями, начали утихать, физики-теоретики поняли, что далеко не все фундаментальные проблемы решены. Одно из решений таких проблем — создание теории относительности — ознаменовало подлинный переворот в научной концепции реального физического мира. И хотя этот переворот не оказал столь сильного влияния на нашу повседневную жизнь, как радио и телевидение, ставшие со временем достоянием миллионов, для нашего понимания природы физического мира его последствия были необычайно важны.
Какие проблемы заставляли математиков и физиков в конце XIX в. углубленно размышлять и искать принципиально новые подходы к объяснению фундаментальных явлений окружающего мира? Первая из таких проблем — геометрия физического пространства. Чтобы понять суть этой проблемы, нам придется вернуться к прошлому.
На протяжении двух тысячелетий не один математик высказывал сомнение в физической истинности аксиомы Евклида о параллельных, которая гласит:
И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти две прямые неограниченно встречаются с той стороны, где углы меньше двух прямых.
([17], с. 15.)Это означает (рис. 32), что если углы 1 и 2 в сумме меньше 180°, то прямые aи b, будучи продолженными достаточно далеко, пересекутся (на рисунке — справа).
Рис. 32.
Евклид имел достаточно веские основания, чтобы сформулировать свою аксиому именно так. Он мог бы утверждать, что если сумма углов 1 и 2 равна 180°, то прямые aи bникогда не пересекутся, сколько бы их ни продолжали, т.е. что прямые aи bв этом случае параллельны. Однако Евклид явно опасался предположить, что могут существовать две бесконечныепрямые, которые никогда не пересекаются. Существование таких прямых не подкреплялось опытом и отнюдь не было самоочевидным. Но на основе аксиомы о параллельных и других аксиом своей геометрии Евклид доказал существование бесконечно протяженных параллельных прямых.
Считалось, что аксиома о параллельных в том виде, в каком ее сформулировал Евклид, излишне сложна и ей недостает простоты других аксиом. Самого Евклида придуманный им вариант аксиомы о параллельных также не устраивал: недаром он обращался к этой аксиоме, лишь доказав все теоремы, какие только можно было доказать без нее.
Даже в античную эпоху математики неоднократно пытались решить проблему, связанную с аксиомой о параллельных Евклида. Эти попытки были двух типов. Одни пробовали заменить аксиому о параллельных какой-нибудь другой аксиомой, казавшейся им более очевидной. Другие старались, вывести аксиому Евклида из девяти других аксиом его геометрии. Если бы это удалось, то аксиома о параллельных превратилась бы в одну из теорем и всякие сомнения в ее истинности разом отпали бы. На протяжении двух тысячелетий не один десяток самых выдающихся математиков, не говоря уже о менее известных, пытались и заменить аксиому о параллельных и вывести ее из других аксиом. История аксиомы Евклида о параллельных длительна, изобилует техническими деталями, и мы не будем пересказывать ее здесь подробно, тем более что она не имеет прямого отношения к главной теме нашего повествования и неоднократно излагалась в других работах. {10}

