Физические эффекты и явления - неизвестен Автор
Шрифт:
Интервал:
Закладка:
18.3.1. Фотоэффект. (см. так же 14.1.1.)
При фотоэффекте рентгеновский или гамма-квант передает всю энергию электрону атома. При этом, если электрон получает энергию, большую, чем энергияч связи его в атоме, то он вылетает из атома. Этот электрон называется фотоэлектроном. При потере атомами фотоэлектронов освободившиеся места в электронных оболочках в дальнейшем заполняются электронами с внешних оболочек. Переход электронов на более близкую к ядру оболочку сопровождается испусканием кванта характреристического излучения, которое можно зарегистрировать, например, фотоэммульсией.
США патент 3 580 745: Способ и устройство для маркировки банок в контейнере путем облучения чувствительной эммульсией. Перед упаковкой с траспортировочной картонный контейнер, торец каждой банки покрывают чувствительной к облучению эммульсией. Банки, упакованные в контейнер облучают рентгеновскими или гамма- лучами. При этом, покрытие эммульсией торцы банок облучаются через экран с прорезями, имеющими форму маркировочных обозначений (например цены). Таким образом, маркировка упакованных в картонный контейнер банок осуществляется без вскрытия этого контейнера и последующей индивидуальной маркировки каждой банки.
При малых энергиях квантов (Е 0,5 Мэв) фотоэлектроны вылетают преимущественно в направлениях, перпендикулярных направлению распространения излучения. Чем выше энергия квантов, тем ближе к их первоначальному направлению движение выбрасываемых фотоэлектронов. Процесс образования фотоэлектронов приводит к ионизации облучаемого вещества, что находит большее применение для интенсификации различных технологических процессов.
А.с. 241 010: Способ получения политокарбонилфторида полимиризацией тиокарбонилфторида, отличающийся тем, что с целью упрощния процесса и получения более чистого полимера, полимиризацию осуществляют под действием гамма излучения Со 60.
А.с. 375 295: Способ получения алтилгалогенидов германия взаимодействия четырехгалоидного германия с триалкалгерманием при нагревании, отличающийся тем, что с целью увелечения выхода и чистоты целевого продукта, процесс ведут при гамма облучении.
18.3.2. Рассеяние рентгеновского и гамма излучения.
Различают два основных процесса рассеяния: комптновское или кекогерентное (камптон эффект) и корентное рассеяние.
При камптон-эффекте происходит упругое соударение первичного кванта со свободным электроном вещества. камптоновское рассеяние представляет собой взаимодействие кванта с электроном, при котором, в отличии от фотоэффекта, квант передает электрону не всю энергию, а только ее часть, отклоняясь при этом от своего первоначального направления в некоторый угол а электрон, получивший некоторое количество энергии, начинает двигаться под углом к напрвлению движения рентгеновского или гамма-кванта. В результате камптон-эффекта появляется рассеянный квант большей длиной волны, изменившей первоначальное направление, и электрон отдачи (камптоновский электрон), получивший часть энергии кванта. Камптоновские электроны характеризуются непрерывным спектром от ничтожномалых значений до максимальной величины (если они выбрасываются в направлении движения кванта).
18.3.3. В случае, если энергия кванта сравнима с энергией связи электрона в атоме, происходит когерентное рассеяние квантов. При этом, когда электромагнитная волна встречается с электроном, последний начинает колебаться с частотой этой волны и излучает: энергию ввиде рассеянной волны. Энергия кванта при этом не изменяется. Движение электронов в атоме взаимосвязано, поэтому излучение, рассеянное одним электроном, будет интерферировать с излучением, рассеяным другими электронами этого же атома. Рассеянные гамма кванты несут информацию о структуре облучаемого вещества, поэтому рассеянное излучение можно использовать для различных измериельных целей.
А.с. 120 675: Способ определния угла смачивания и поверхностного или межфазового натяжения непрозрачных систем при высоких температурах фотографирование контура, которое осуществляется в пучках мягких гамма лучей полученных от радиоактивных изотопов, например иридин, 192, тулия 170 или европия 154 или 156.
18.3.4. Эффект образования пар.
При взаимодействии с атомами ядра кванты рентгеновского и гамма излучения достаточно высокой энергии (не менее 1,02 Мэв) вызывают одновременное появление электронов и позитронов. Процесс образования электронно-позитронных пар происходит в поле атомного ядра или поле электрона. Позитрон существует лишь очень короткий промежуток времени; вслед за образованием пары наблюдается явление аннигиляции - исчезновение позитрона и какого либо электрона среды, сопровождаемое излучением двух квантов с энергией 0,51 Мэв.
18.4. Взаимодействие электронов с веществом.
Различают следующие виды взаимодествия: упругое и неупругое рассение электронов на атомных ядрах и электроных оболочек и торможение электронов в кулоновком поле атомных ядер.
18.4.1. Упругое рассеяние имеет место при таких столкновениях, при которых происходят лишь изменения направления движения сталкивающихся частиц, тогда как их общая энергия остается неизменной. Основную роль в россеянии электронов играет упругое рассеяние на атомных ядрах, хотя электроны рассеиваются и на электронах атомных оболочек. Вследствии малой массы электронов они отклоняются на углы от 0 градусов до 180 градусов, причем на малые углы электроны отклоняются с большей вероятностью. При отклонении на ьольшие углы электроны несут информацию о строении вещества рассеивателя, что может быть использовано в различных измерительных приборах.
США патент 3 560 742: Портативное устройство для измерения обратно рассеянного фета-излучения предназначено для эффективных измерений толщины покрытия обрабатываемой детали. Устройство содержит зажим для монтажа постоянного зондирующего элемента. Этот зажим является составной частью устройств, регулирующих положение зондирующего элемента относительно обрабатываемой детали с тем, чтобы они контактировали друг с другом. В другом варианте выполнения изобретения, устройство содержит укосину, которая фиксирована относительно обрабатывающей детали. Зажим у укосина предназначен для удержания зондирующего элемента в плотном контакте с поверхностью обрабатываемой детали, т.е. в положении измерения толщины покрытия нанесенного на поверхность обрабатываемой детали.
18.4.2. Неупругое рассеяние элктронов происходит в основном в результате их сталкивания с орбитальными электронами. При столкновении электронов с электронами атомных оболочек часть энергии электронов передается связанному электрону атома. В зависимости от количества переданной энергии происходит возбуждение или ионизация атомов вещества. В этом и другом случае воздействующий электрон теряет свою энергию. Большая часть вторичных электронов обладает незначительно кинетической энергией. Процесс возбуждения сопровождается испусканием характеристического излучения. Процесс неупругого рассеяния, посколько он сопровождается ионизацией может использоваться для интенсификации различных технологических процессов:
Патент СНГ 454 752: Способ приготовления пульпы из древесной цепи путем облучения древесной щепы с последующей варкой, отличающийся тем, что с целью повышения выхода пульпы и улучшения ее качества, облучение щепы производят электронами дозой не менее 1,0 Мрад.
Патент США 3 820 015: Устройство для измерения концентрации кислорода в выхлопных газах двигателей внутреннего сгорания, содержит источник бетта-электронов, обладающих низким уровнем энергии для ионизации молекул кислорода. Указанный источник расположен во вторичном контуре выхлопной трубы. В этот контур выхлопной газ подается с определенной скоростью при помощи насоса постоянной производительности. На выходе источника бетта-электронов в ниспадающей части потока газов установлена коллекторная пластина. При этом между источником бетта-электронов и коллекторной пластинкой поддерживается определенная разность потенциалов, под действием которой ионизированные молекулы кислорода отделяются от молекул других газов и ударяются о коллекторную пластину. Концентрация кислорода выхлопных газов определяется путем измерения заряда, накапливающегося на коллекторной пластинке.
18.4.3. Тормозное излучение.
Помимо потерь на ионизацию и возбуждение атомов вещества, электроны могут терять свою энергию на образование тормозного излучения. Проходя вблизи атомного ядра, под действием его электрического поля электроны испытывают торможение. Поэтому в соответствии с законом сохранения энергии они будут испускать электромагнитное (тормозное) излучение. В тормозное излучение может преобразоваться любая часть кинетической энергии электрона вплоть до ее максимального значения. Поэтому энергетический спектр тормозного излучения непрерывный. Примером тормозного излучения является рентгеновское излучение возникающее при торможении электронов на аноде рентгеновской трубки. Это используется в рентгеновских аппаратах.