- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь
Шрифт:
Интервал:
Закладка:
Вот, собственно говоря, и все, что говорит античная традиция о математических открытиях Пифагора, остальные свидетельства мы уже приводили выше. Нетрудно заметить, что за пределы области, очерченной авторами IV в., выходит лишь сообщение Ямвлиха о дружественных числах. Никто из античных писателей не соединяет с Пифагором никаких грандиозных достижений и не приписывает ему ничего такого, что в принципе не могло бы ему принадлежать. Обнаруживаемое единодушие, пожалуй, достойно удивления, и его едва ли нарушают слова Прокла о теории иррациональности и пяти правильных многогранниках, особенно если учитывать, что он жил через тысячу лет после Пифагора.
Несколько забегая вперед, отметим, что такую же картину мы наблюдаем и в гармонике, и в астрономии. С последней, правда, дело обстоит несколько сложнее, однако и здесь можно показать, что разногласия источников проистекают из-за естественных искажений, с которыми мы сталкиваемся в тысячах других случаев, а не в силу особого характера пифагорейской школы.
* * *
Вернемся теперь к тому, о чем уже упоминалось выше: к тесной взаимосвязи всех математических открытий Пифагора. Конечно, сама по себе она не является прочным основанием для реконструкции: хорошо известно, что решения двух логически связанных проблем могут отстоять друг от друга на многие десятилетия. И все же эта взаимосвязь еще раз подтверждает достоверность собранных выше свидетельств.
Одним из важных звеньев между арифметикой, геометрией и гармоникой была теория пропорций.[577] Пифагору, безусловно, были известны три средние пропорциональные: арифметическое c=(a+b)/2, геометрическое c=√ab и гармоническое c=2ab/(a+b) также «музыкальная» пропорция a : (a+b)/2 = 2ab/(a+b) : b, прямо связанная с его акустическими исследованиями.[578] По сообщению Гауденция (Intr. harm. 11), восходящему к более ранним источникам,83 Пифагор открыл численное выражение гармонических интервалов путем деления струны монохорда в отношении 12:6, 12:8, 12:9. Данные отношения присутствуют и в «музыкальной» пропорции, где средние члены являются арифметическим и гармоническим средним между крайними (6:9 = 8:12). Эту же пропорцию использовал и Гиппас в своем опыте с медными дисками (Aristox. fr. 90).[579]
Интересное подтверждение принадлежности Пифагору теории пропорций нашел Г. Френкель.[580] Он показал, что некоторые идеи Гераклита выражены в форме геометрической пропорции, например: бог/человек = человек/ребенок (22 В 79), бог/человек = человек/обезьяна (22 В 82-83). Френкель резонно предположил, что Гераклит не сам нашел геометрическую пропорцию, а воспринял ее у ранних пифагорейцев.
Арифметическую теорию пропорций, приложимую к соизмеримым величинам, Пифагор, скорее всего, использовал и при доказательстве своей знаменитой теоремы.[581] Ход ее, согласно реконструкции Хита, таков. Исходя из того, что в подобных треугольниках ABC, ABD и A CD стороны пропорциональны, мы получаем следующие равенства:
Складывая их, мы получаем: АВ2+АС2 = BC(BD + DC), или АВ2+ AC2 = DC2.
Следующий раздел пифагоровой арифметики — это учение о четном и нечетном, ставшее первым образцом теории чисел. Как считал Беккер, а вслед за ним большинство историков греческой математики,87 оно сохранилось у Евклида почти в неизменном виде (IX,21-34). Приведем для примера первые пять положений этого учения (в сокращенной форме):
21. Сумма четных чисел будет четной;
22. Сумма четного количества нечетных чисел будет четной;
23. Сумма нечетного количества нечетных чисел будет нечетной;
24. Четное число минус четное число есть четное;
25. Четное число минус нечетное число есть нечетное. Доказательства этих предложений опираются на определения
VII книги и строго логически следуют друг за другом. Хотя Евклид иногда представлял числа в виде отрезков (впрочем, это было скорее исключением, чем правилом), а пифагорейцы пользовались счетными камешками (ψήφοι), суть дела от этого не меняется. Беккер, а еще более подробно Кнорр демонстрируют, что сохраненные Евклидом доказательства (а не только сами предложения) легко иллюстрируются при помощи псефов.[582]
Абсолютно неправдоподобно, чтобы Пифагор выдвигал данные предложения без доказательств, которые были добавлены кем-то позднее: сами предложения в большинстве своем очевидны любому, кто знаком с элементарными вычислениями. Аристоксен или Аристотель, говоря о пифагоровой арифметике, едва ли ставили бы ему в заслугу «открытие» или «иллюстрацию» того факта, что сумма четных чисел всегда будет четной, если бы это и сходные с ним предложения не были доказаны. Точно так же, как Фалес в геометрии, Пифагор начал в арифметике с доказательства простейших фактов, которые раньше не считали нужным доказывать. Насколько быстро он продвинулся в разработке дедуктивного метода, показывает следующий факт: четыре предложения этого учения (IX,30-31, 33-34) доказываются от противного. Первым на это обратил внимание Сабо, но он отказался признать, что эти доказательства столь же древние, как и предложения.[583] Единственный, в сущности, аргумент, который он приводит, — отсутствие исторических свидетельств — критики не выдерживает. Источников по раннегреческой математике так мало, что ожидать свидетельств для каждого доказательства было бы совершенно утопичным.
Обратившись к математической стороне проблемы, следует признать справедливость выводов Беккера, полагавшего, что все учение о четном и нечетном следует рассматривать еп bloc. (Отмеченные им незначительные изменения не касались предложений 30-31, 33-34.) Предложения, доказываемые от противного, совершенно естественно следуют из доказываемых прямым образом, не отличаясь от них по сложности. Так, например, для доказательства предложений 33-34 не требуется ничего, кроме определений 8-9 седьмой книги. Было бы крайне странно полагать, что первоначальное прямое доказательство было впоследствии заменено косвенным: греческая математика систематически избегала подобных операций. Словом, все говорит за то, что это учение дошло до нас в первоначальном виде.
Отсюда следуют два важных вывода: 1) наглядность математических фактов и их дедуктивное доказательство вовсе не находятся в непримиримом противоречии, как это стремился представить Сабо; 2) доказательство от противного родилось внутри математики, причем на самом раннем ее этапе,[584] и лишь затем элеаты попытались применить его в философии.
Другой пример очень раннего применения косвенного доказательства — теорема о равенстве сторон треугольника, стягивающих равные углы (Eucl. 1,6), обратная доказанной Фалесом теореме о равенстве углов в равнобедренном треугольнике. Она относится к реконструированному ван дер Варденом раннепифагорейскому математическому компендию и была, вероятно, доказана либо в поколении Пифагора, либо в следующем за ним.[585]
Вторым связующим звеном между геометрией и арифметикой была теория фигурных чисел (треугольных, квадратных, прямоугольных и т.д.). Хотя до нас не дошло прямых свидетельств, относящих ее к Пифагору, в пользу его авторства говорит целый ряд аргументов.
Построение фигурных чисел с помощью гномона (угольника) представляет собой суммирование простых арифметических рядов, например, четных или нечетных

