Большая Советская Энциклопедия (ПЛ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
П. м. на основе полиэтилена легко формуются и свариваются в изделия сложных форм, они устойчивы к ударным и вибрационным нагрузкам, химически стойки, отличаются высокими электроизоляционными свойствами (диэлектрическая проницаемость 2,1—2,3) и низкой плотностью. Изделия с повышенной прочностью и теплостойкостью получают из полиэтилена, наполненного коротким (до 3 мм) стекловолокном. При степени наполнения 20% прочность при растяжении возрастает в 2,5 раза, при изгибе — в 2 раза, ударная вязкость — в 4 раза и теплостойкость — в 2,2 раза.
Жёсткая П. м. на основе поливинилхлорида — винипласт, в том числе эластифицированный (ударопрочный), формуется значительно труднее полиэтиленовых пластиков, но прочность её к статическим нагрузкам намного выше, ползучесть ниже и твёрдость выше. Более широкое применение находит пластифицированный поливинилхлорид — пластикат. Он легко формуется и надёжно сваривается, а требуемое сочетание в нём прочности, деформационной устойчивости и теплостойкости достигается подбором соотношения пластификатора и твёрдого наполнителя.
П. м. на основе полистирола формуются значительно легче, чем из винипласта, их диэлектрические свойства близки к свойствам полиэтиленовых П. м., они оптически прозрачны и по прочности к статическим нагрузкам мало уступают винипласту, но более хрупки, менее устойчивы к действию растворителей и горючи. Низкая ударная вязкость и разрушение вследствие быстрого прорастания микротрещин — свойства, особенно характерные для полистирольных пластиков, устраняются наполнением их эластомерами, т. е. полимерами или сополимерами с температурой стеклования ниже — 40 °С. Эластифицированный (ударопрочный) полистирол наиболее высокого качества получают полимеризацией стирола на частицах бутадиен-стирольного или бутадиен-нитрильного латекса. Материал, названный АБС, содержит около 15% гель-фракции (блок- и привитые сополимеры полистирола и указанных сополимеров бутадиена), составляющей граничный слой и соединяющей частицы эластомера с матрицей из полистирола. Морозостойкость материала ограничивает температура стеклования эластомера, теплостойкость — температура стеклования полистирола.
Теплостойкость перечисленных термопластов находится в пределах 60—80 °С, коэффициент термического расширения высок и составляет 1 • 10-4, их свойства резко изменяются при незначительном изменении температуры, деформационная устойчивость под нагрузкой низкая. Этих недостатков отчасти лишены термопласты, относящиеся к группе иономеров, например сополимеры этилена, пропилена или стирола с мономерами, содержащими ионогенные группы (обычно ненасыщенные карбоновые кислоты или их соли). Ниже температуры текучести благодаря взаимодействию ионогенных групп между макромолекулами создаются прочные физические связи, которые разрушаются при размягчении полимера. В иономерах удачно сочетаются свойства термопластов, благоприятные для формования изделий, со свойствами, характерными для сетчатых полимеров, т. е. с повышенной деформационной устойчивостью и жёсткостью. Однако присутствие ионогенных групп в составе полимера понижает его диэлектрические свойства и влагостойкость.
П. м. с более высокой теплостойкостью (100—130 °С) и менее резким изменением свойств с повышением температуры производят на основе полипропилена, полиформальдегида, поликарбонатов, полиакрилатов, полиамидов, особенно ароматических полиамидов. Быстро расширяется номенклатура изделий, изготавливаемых из поликарбонатов, в том числе наполненных стекловолокном.
Для деталей, работающих в узлах трения, широко применяются пластики из алифатических полиамидов, наполненных теплопроводящими материалами, например графитом.
Особенно высоки химическая стойкость, прочность к ударным нагрузкам и диэлектрические свойства пластиков на основе политетрафторэтилена и сополимеров тетрафторэтилена (см. Фторопласты). В материалах на основе полиуретанов удачно сочетается износостойкость с морозостойкостью и длительной прочностью в условиях знакопеременных нагрузок. Полиметилметакрилат используют для изготовления оптически прозрачных атмосферостойких материалов (см. также Стекло органическое).
Объём производства термопластов с повышенной теплостойкостью и органических стекол составляет около 10% общего объёма всех полимеров, предназначенных для изготовления П. м.
Отсутствие реакций отверждения во время формования термопластов даёт возможность предельно интенсифицировать процесс переработки. Основные методы формования изделий из термопластов — литьё под давлением, экструзия, вакуумформование и пневмоформование. Поскольку вязкость расплава высокомолекулярных полимеров велика, формование термопластов на литьевых машинах или экструдерах требует удельных давлений 30—130 Мн/м = (300—1300 кгс/см2).
Дальнейшее развитие производства термопластов направлено на создание материалов из тех же полимеров, но с новыми сочетаниями свойств, применением эластификаторов, порошковых и коротковолокнистых наполнителей.
Основные виды реактопластов. После окончания формования изделий из реактопластов полимерная фаза приобретает сетчатую (трёхмерную) структуру. Благодаря этому отверждённые реактопласты имеют более высокие, чем термопласты, показатели по твёрдости, модулю упругости, теплостойкости, усталостной прочности, более низкий коэффициент термического расширения; при этом свойства отверждённых реактопластов не столь резко зависят от температуры. Однако неспособность отвержденных реактопластов переходить в вязкотекучее состояние вынуждает проводить синтез полимера в несколько стадий.
Первую стадию оканчивают получением олигомеров (смол) — полимеров с молекулярной массой 500—1000. Благодаря низкой вязкости раствора или расплава смолу легко распределить по поверхности частиц наполнителя даже в том случае, когда степень наполнения достигает 80—85% (по массе). После введения всех компонентов текучесть реактопласта остаётся настолько высокой, что изделия из него можно формовать заливкой (литьём), контактным формованием, намоткой. Такие реактопласты называются премиксами в том случае, когда они содержат наполнитель в виде мелких частиц, и препрегами, если наполнителем являются непрерывные волокна, ткань, бумага. Технологическая оснастка для формования изделий из премиксов и препрегов проста и энергетические затраты невелики, но процессы связаны с выдержкой материала в индивидуальных формах для отверждения связующего. Если смола отверждается по реакции поликонденсации, то формование изделий сопровождается сильной усадкой материала и в нём возникают значительные остаточные напряжения, а монолитность, плотность и прочность далеко не достигают предельных значений (за исключением изделий, полученных намоткой с натяжением). Чтобы избежать этих недостатков, в технологии изготовления изделий из смол, отверждающихся по реакции поликонденсации, предусмотрена дополнительная стадия (после смешения компонентов) — предотверждение связующего, осуществляемое при вальцевании или сушке. При этом сокращается длительность последующей выдержки материала в формах и повышается качество изделий, однако заполнение форм из-за понижения текучести связующего становится возможным только при давлениях 25—60 Мн/м2 (250—600 кгс/см2).
Смола в реактопластах может отверждаться самопроизвольно (чем выше температура, тем больше скорость) или с помощью полифункционального низкомолекулярного вещества — отвердителя.
Реактопласты с любым наполнителем изготавливают, применяя в качестве связующего феноло-альдегидные смолы, часто эластифицированные поливинилбутиралем (см. Поливинилацетали), бутадиен-нитрильным каучуком, полиамидами, поливинилхлоридом (такие материалы называют фенопластами), и эпоксидные смолы, иногда модифицированные феноло- или анилино-формальдегидными смолами или отверждающимися олигоэфирами.
Высокопрочные П. м. с термостойкостью до 200 °С производят, сочетая стеклянные волокна или ткани с отверждающимися олигоэфирами, феноло-формальдегидными или эпоксидными смолами. В производстве изделий, длительно работающих при 300 °С, применяют стеклопластики или асбопластики с кремнийорганическим связующим; при 300—340 °С — полиимиды в сочетании с кремнезёмными, асбестовыми или углеродными волокнами; при 250—500 °С в воздушной и при 2000—2500 °С в инертной средах — фенопласты или пластики на основе полиамидов, наполненные углеродным волокном и подвергнутые карбонизации (графитации) после формования изделий.