- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Наблюдения и озарения или Как физики выявляют законы природы - Марк Перельман
Шрифт:
Интервал:
Закладка:
Поэтому можно думать, что если дальнее поле волны проквантовано, т. е. представлено в виде совокупности квантов с определенными свойствами, то ближнее поле не является квантовым, или же в нем нельзя выделить определенные наборы квантов, т. е. в нем присутствуют при данной частоте все длины волн — эта проблема еще не решена. Но если есть все длины волн, то они могут отражать свойства малых деталей предметов.
Снимки в ближнем поле производятся, например, так: световод с заостренным кончиком подводится к снимаемому объекту на расстояние меньшее длины волны, т. е. на такое, в котором выходящее из него поле не разделилось на ближнее и дальнее. Рассматривается интерференционная картина между потоками света, выходящими из световода и отраженными от поверхности, эта картина фотографируется и добавочно увеличивается. (Исследуются и другие схемы.)
Сейчас можно только сказать, что область ближнего поля и ее возможности в микроскопии пока еще недостаточно изучены. Подождем новых исследований и изобретений…
Глава 2
Изобретение транзистора
Зарождение радиотехники потребовало создания детектора, т. е. устройства, пропускающего электрический ток только в одном направлении. Дело в том, что обычная радиопередача идет на волнах высокой (несущей) частоты, амплитуда или фаза которых меняются (модулируются) гораздо более низкой звуковой частотой. Поэтому ток, генерируемый на антенне приемника, является высокочастотным, и нужно сперва выделить из него колебания одного направления, а затем уже можно будет по одной линии пустить колебания высокой частоты (несущей), а по другой — полезный сигнал.
В первых радиоприемниках, их называли детекторными, такое выделение осуществлял обычно кристалл галенита (свинцового блеска) — его припаивали к одному концу цепи, а ко второму присоединяли иголку («кошачий ус») и, двигая ею по кристаллу, искали «точку», то есть место, в котором электроны могли проходить только в одну сторону, и тогда в наушниках возникал долгожданный шум, а иногда даже речь и музыка[46].
Однако ламповые диоды, основанные на эффекте Эдисона, о которых мы говорили в главе «Электротехника и радиотехника», были надежнее, а звуковые колебания могли в таких приемниках усиливаться триодами. Казалось, что ламповая электроника одержала бесспорную и окончательную победу.
Но со временем стали ясны и ее недостатки: лампы были громоздкими, срок их службы — сравнительно коротким, а для подогрева катодов требовался дополнительный расход энергии, кроме того, стеклянные баллоны были хрупкими.
По-видимому, первыми взялись за создание нового типа электроники Уильям Шокли (1910–1989), Уолтер Браттейн (1902–1987) и Джон Бардин (1908–1991). Они и разделили Нобелевскую премию 1956 г. (Вторую Нобелевскую премию по физике Бардин получил в 1972 г. за теорию сверхпроводимости.)
Успех этой группы был обусловлен тем, что все трое начинали свою научную работу под руководством выдающихся ученых, т. е. прошли хорошую школу, и смотрели на исследуемые явления с разных, но, как оказалось, дополняющих друг друга точек зрения.
Шокли учился в знаменитом Массачусетском технологическом институте (МТИ) и начинал с расчетов поведения электронов в кристаллах, а затем стал работать в лаборатории телефонной компании «Белл» под руководством К. Дж. Дэвиссона, нобелевского лауреата, открывшего волновые свойства электронов. Первым заданием Шокли было проектирование электронного умножителя — особого рода электронной лампы, действующей как усилитель. Затем он возвращается к физике твердого тела и уже в 1939 г. выдвигает план разработки твердотельных усилителей, прообразов будущих транзисторов, для замены электронных ламп. Этот проект, правда, оказался в то время неосуществимым, но цель работы была ясна.
Бардин учился в Принстонском университете под руководством Ю. Вигнера, а диссертацию написал по силам притяжения, удерживающим электроны внутри металла. Затем в Гарварде он работал с Дж. Г. Ван Флеком и П. У. Бриджменом над проблемами атомной связи и электрической проводимости в металлах — его учителями были три будущих нобелевских лауреата.
В те же годы Браттейн изучает такие явления, как влияние адсорбционных пленок на эмиссию электронов горячими поверхностями, электронные столкновения в парах ртути, занимается магнитометрами, инфракрасными явлениями и эталонами частоты.
В годы войны все трое работали над проблемами радиолокации и радиосвязи, что также добавило им опыта в области, где они потом прославились. В 1945 г. они возвращаются в «Лаборатории Белл» на работу в программе научных исследований по физике твердого тела и возобновляют начатые перед войной исследования полупроводников. В этом содружестве Шокли определил первоначальное направление работ, Бардин разрабатывал теорию явлений, Браттейн экспериментально определял свойства и поведение исследуемых материалов и приборов.
Любопытно отметить, что если Шокли и Бардин были потомственными горожанами, то Браттейн был из села, и, хотя жизнь на ранчо на лоне природы ему нравилась, фермерский труд ом ненавидел. «Хождение в пыли за тремя лошадьми и бороной — вот что сделало из меня физика», — скажет он впоследствии.
Для всего дальнейшего нам нужно коротко рассказать о свойствах полупроводников. Их электропроводность является промежуточной между электропроводностью хороших проводников (к числу которых относится большинство металлов) и изоляторов и сильно изменяется в зависимости от характера и концентрации примесей в материале, а также от температуры. К этому времени уже появились квантовые расчеты полупроводников, но эти теории еще не были адекватно проверены экспериментами.
В совершенном кристалле, как принято говорить, связи между атомами «насыщены» или «заполнены». Электроны трудно оторвать, они с трудом перемещаются, что приводит к очень высокому электрическому сопротивлению — это изолятор. Однако вкрапления чужеродных атомов, которые не вполне подходят к данной структуре, приводят либо к появлению избыточных электронов, способных участвовать в электрическом токе, либо к дефициту электронов, известному как «дырки», — электропроводность возрастает.
Причина роста электропроводности заключается в следующем. Если в чистый кристалл ввести примеси в виде атомов, нарушающих регулярную кристаллическую структуру и могущих отдать на один электрон больше, то будет создан кристалл n-типа (от negative — отрицательный) с избытком электронов. Если же вводить атомы, отдающие связям на один электрон меньше, чем атомы решетки, создается кристалл р-типа (от positive — положительный). Так как электрон несет отрицательный заряд, то незаполненное электронное состояние ведет себя как положительный заряд такой же величины и при этом может двигаться: когда соседний электрон перемещается «вперед», чтобы заполнить дырку, он оставляет позади себя новую дырку, поэтому создается впечатление, будто дырка движется назад, хотя, в среднем, и не с такой скоростью, как электроны, и в противоположном направлении (до работ этой группы вклад дырочного тока в полный ток недооценивался).
Вначале Шокли намеревался моделировать основной принцип устройства электронной лампы: приложить электрическое поле поперек полупроводника и с его помощью управлять прохождением электрического тока вдоль образца. Но хотя расчеты показывали, что такое поле должно приводить к усилению тока, получить практические результаты не удавалось. (Заметим, что такое устройство удалось осуществить, пока в лабораторной модели, только в 2010 г. с развитием нанотехнологии.)
Тогда Бардин предположил, что электроны оказываются запертыми в поверхностном слое, и этот слой не пропускает поле внутрь полупроводника, экранирует его. Пришлось взяться за исследование поверхностных эффектов — это и помогло понять сложное поведение полупроводниковых устройств.
В 1947 г. Бардин и Браттейн достигли первого успеха, построив полупроводниковый усилитель, или транзистор (от английских слов transfer — перенос, плюс resistor, от лат. resisto — сопротивляюсь). Это был блок германия (полупроводника n-типа) с электродом на широкой грани (база), а на противоположной грани были два близко расположенных золотых точечных контакта («кошачьи усы»). К одному контакту (эмиттеру) прикладывалось небольшое положительное напряжение относительно базы и большое отрицательное напряжение относительно второго контакта (коллектора). Сигнал, подаваемый на эмиттер вместе с постоянным смещением, передавался со значительным усилением в цепь коллектора. В основе действия транзистора лежит внедрение дырок в германий через контакт-эмиттер и их движения к контакт-коллектору, где дырки усиливают коллекторный ток.

