Рождение сложности: Эволюционная биология сегодня - Александр Марков
Шрифт:
Интервал:
Закладка:
Ухватившись за это обстоятельство, ученые приступили к искусственному отбору гусениц с мутацией black. В одной линии отбирались гусеницы, реагирующие на тепловой шок минимально (т. е. остающиеся черными или почти черными). В другой линии, наоборот, отбирались те особи, которые реагировали на перегрев максимальным позеленением. Уже в седьмом поколении в первой линии была полностью утрачена способность реагировать на тепловой шок изменением окраски (полный монофенизм).
Во второй линии за 13 поколений возник настоящий полифенизм. Все гусеницы в этой линии теперь становились ярко-зелеными при постоянной температуре 28°С. Теплового шока, нагревания до 30-33°С, уже не требовалось. При более низких температурах гусеницы оставались черными.
Чтобы проверить, связано ли изменение окраски у полифенных гусениц с ювенильным гормоном, ученые провели следующий жестокий эксперимент: туго перевязали гусениц поперек брюшка, чтобы гормон, синтезирующийся в голове и груди, не мог попасть в заднюю часть тела. Гусеницы стоически перенесли издевательство и доказали правильность предположений своих мучителей, позеленев спереди и оставшись черными сзади. Гусеницы из монофенной линии, естественно, оставались черными хоть с перевязками, хоть без.
Результаты продемонстрировали тот путь, который проделывает случайная мутация (такая как мутация black) под действием отбора до настоящего полифенизма, и что изменения гормональной регуляции могут играть важную роль в подобных эволюционных преобразованиях.
Более общий эволюционный вывод, который можно сделать на основании этой работы, состоит в том, что генотип может содержать в себе в скрытом виде разнообразные новые возможности (варианты развития), до поры до времени не проявляющиеся, замаскированные различными регуляторными механизмами — например, той же гормональной регуляцией. Но в экстраординарных условиях, в результате мутации или стресса, регуляторные механизмы могут дать сбой, и тогда скрытая изменчивость станет явной и может стать основой для развития новых полезных адаптаций.
(Источник: Suzuki Y., Nijhout Н. F. Evolution of a Polyphenism by Genetic Accommodation // Science. 2006. V. 311. P. 650-652.)
Что почитать на эту тему в Интернете
Н. А. КОЛЧАНОВ, В. В. СУСЛОВ. Кодирование и эволюция сложности биологической организации. 2006. // "Эволюция биосферы и биоразнообразия" (к 70-летию А. Ю. Розанова), http://evolbiol.ru/r_kolchanov.htm
Н. А. КОЛЧАНОВ, В. В. СУСЛОВ, В. К. ШУМНЫЙ. Молекулярная эволюция генетических систем. 2003. http://ev0lbi0l.ru/kolchanov2003.htm
А. В. МАРКОВ. 2003-2007. Обзоры и подобрки литературы на сайте "Проблемы эволюции":
Проблема эволюционных новообразований, http://evolbiol.ru/news.htm
Причины прогресса, http://evolbiol.ru/progress.htm
А. П. РАСНИЦЫН. Процесс эволюции и методология систематики. 2002. // Труды Русского энтомологического общества. Т. 73. С. 1-108. http://www.palaeoentomolog.ru/Publ/Rasn/methodology.html
И. И. ШМАЛЬГАУЗЕН. Факторы эволюции. Теория стабилизирующего отбора. 1968. 450 с. http://evolbiol.ru/factory.htm
И. И. ШМАЛЬГАУЗЕН. Организм как целое в индивидуальном и историческом развитии. 1982. http://rogov.zwz.ru/Macroevolution/org_kak_tsel.doc
Б. М. МЕДНИКОВ. Аналогия (параллели между биологической и культурной эволюцией). 2004 // Человек. № 1-4. http://vivovoco.rsl.ru/vv/papers/men/medn/analogy.htm
ГЛАВА 5. ЖИВОТНЫЕ
Предыдущая глава, посвященная эволюционным механизмам усложнения живых существ, должна была морально подготовить нас к разговору о той группе эукариот, в которой тенденция к усложнению проявилась наиболее ярко. Речь пойдет о животных. Эта группа нам ближе всех, ведь мы сами к ней относимся. Кроме того, она и по многим объективным характеристикам представляется наиболее интересной. К таким объективным показателям можно отнести и рекордное разнообразие видов (одних только насекомых описано более миллиона видов — больше, чем во всех остальных группах живых организмов, вместе взятых), и "господствующее" положение в экосистемах (в том смысле, что животные занимают самые верхние этажи трофической пирамиды), и действительно самый высокий уровень сложности среди всех живых существ.
Начнем с самого начала — с того, как животные появились на свет.
И снова ископаемая летопись
Первые этапы эволюционного развития эукариот представлены в палеонтологической летописи весьма скудно. В течение протерозойского зона (2,5-0,54 млрд лет назад), судя по палеонтологическим данным, разнообразие и численность микроорганизмов неуклонно росли. К сожалению, далеко не всегда можно уверенно отличить ископаемых прокариот от одноклеточных эукариот. Ведь от древних микробов ничего не остается, кроме минерализованных (окаменевших) оболочек.
Современные одноклеточные эукариоты обычно раз в десять крупнее прокариот, но это не абсолютное правило, и никто не знает, насколько строго оно соблюдалось в глубокой древности. Самым надежным признаком считается структура клеточной оболочки. Например, если она покрыта шипами, можно не сомневаться: перед нами представитель эукариот. Но далеко не все протисты имеют такие узнаваемые оболочки. Древнейшие ископаемые одноклеточные организмы, которых можно с полной уверенностью отнести к эукариотам, имеют возраст около 2,0-1,8 млрд лет.
Строматолиты — слоистые минеральные образования, формирующиеся в результате жизнедеятельности микробных сообществ — в течение протерозойского зона становились все более разнообразными и многочисленными. Мы можем уверенно сказать, что важнейшую роль в строматолитообразующих сообществах в этот период играли цианобактерии, среди которых встречались формы, внешне не отличимые от современных. Протерозойские строматолиты достигли высокого уровня сложности: появились формы со всевозможными ветвящимися столбиками, козырьками, разнообразной слоистостью и микроструктурой и т. п. Современные строматолиты, образуемые бактериальными матами, устроены намного проще. Из этого следует, что и протерозойские микробные маты были не в пример сложнее современных. Возможно, не последнюю роль в них играли одноклеточные эукариоты, но пока это лишь предположение.
Шарики сернистого цинка в пленке сульфатредуцирующих бактерий (они на фотографии выглядят длинными нитями). Шарики получаются за счет образования связей между наночастицами сернистого цинка и цистеинсодержащими пептидами, выделяемыми клетками.
Строматолиты — слоистые образования, сформировавшиеся в результате жизнедеятельности древних микробных сообществ.
Микробиологи тоже не лишены чувства юмора. Они утверждают: "Настоящий мат должен быть трехэтажным. Если меньше трех этажей, это уже не мат, а так... биопленка". Перевернутый вверх ногами флаг африканского государства Малави помогает запомнить расположение слоев в типичном бактериальном мате. Верхний слой — зеленый из-за хлорофилла цианобактерий. Второй слой — красный или розовый из-за пигментов пурпурных бактерий. Третий слой — черный из-за сульфидов, производимых бактериями-сульфатредукторами. Красное солнце, вспыхнувшее в черном слое, можно расценивать как аллегорическое изображение появления эукариот в результате симбиоза обитателей двух нижних слоев сообщества. Правда, в современных матах слои не одной ширины: самым толстым обычно является черный слой, а самым тонким — красный.
Уникальный морской червь Olavius algarvensis, перепоручивший заботу о своем пропитании и удалению отходов бактериям-симбионтам.
Аксолотль — земноводное, сохраняющее способность к восстановлению утраченных конечностей в течение всей жизни. Это сделало его излюбленным объектом биологов, изучающих механизмы регенерации.
В окрестностях озера Верхнего в Северной Америке в отложениях возрастом 1,9-1,4 млрд лет найдены спиралевидные углеродистые ленты, получившие название Grypania. Некоторые авторы считают их остатками примитивных многоклеточных эукариотических водорослей.
Вверху: знаменитая дрозофила с ногами вместо антенн; внизу: нормальная дрозофила.
Ход развития и строение взрослого многоклеточного животного "закодирован" в геноме примерно в той же степени и в том же смысле, в каком причудливые морозные узоры на стекле "закодированы" в структуре молекулы воды. В обоих случаях между наследственным кодом и его воплощением (генотипом и фенотипом) лежат сложнейшие, трудно поддающиеся изучению процессы самоорганизации. Эта аналогия помогает понять, почему генетики, даже имея полные тексты геномов многих видов, так медленно продвигаются к пониманию "генетических основ" сложных биологических объектов и явлений.