- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Рациональность. Что это, почему нам ее не хватает и чем она важна - Стивен Пинкер
Шрифт:
Интервал:
Закладка:
Чтобы принять сопряженное с риском решение, необходимо оценить шансы («Есть ли у меня рак?») и взвесить последствия каждого из вариантов («Если у меня рак, а я не буду лечиться, я умру; если же у меня нет рака, а я соглашусь на хирургическое вмешательство, мне придется испытать боль и подвергнуться ненужной уродующей операции»). В главах 6 и 7 мы порассуждаем о том, как надо принимать решения с учетом их последствий, если нам известны вероятности; но в любом случае начинать нужно с вычисления самих вероятностей: какова вероятность, что некое обстоятельство истинно в свете имеющихся доказательств?
Как бы ни пугало вас слово «теорема», правило Байеса не очень сложно, и, как мы убедимся в конце главы, его вполне можно прочувствовать интуитивно. Величайшая догадка его преподобия Томаса Байеса (1701–1761) состоит в следующем: уровень доверия гипотезе можно количественно выразить в виде вероятности. (Это субъективистское понимание слова «вероятность», с которым мы познакомились в предыдущей главе.) Пусть Р(гипотеза) — это вероятность гипотезы, другими словами, степень нашей уверенности в ее истинности. (Если говорить о медицинском диагнозе, гипотеза — это утверждение, что пациент болен.) Очевидно, что доверие любой идее должно основываться на доказательствах. Языком теории вероятности можно сказать, что доверие должно обусловливаться доказательством. Следовательно, нас интересует вероятность гипотезы при условии наличия имеющихся данных, то есть Р(гипотеза|данные). Эту вероятность еще называют апостериорной, или уверенностью в гипотезе после изучения доказательств.
Усвоив этот теоретический момент, вы разберетесь и с правилом Байеса, поскольку это всего лишь формула вычисления условной вероятности, знакомая нам из предыдущей главы, примененная к уверенности и доказательству. Мы помним, что вероятность А при условии В равна вероятности (А и В), деленной на вероятность В. Следовательно, вероятность гипотезы с учетом имеющихся данных (которая нам и нужна) — это вероятность конъюнкции гипотезы и данных (скажем, пациентка больна и анализ у нее положительный), деленная на вероятность данных (общую долю пациентов с положительным тестом, больных и здоровых). Запишем это в виде равенства: Р(гипотеза|данные) = Р(гипотеза И данные)/Р(данные). Еще одно напоминание из главы 4: вероятность (А и В) равна вероятности А, умноженной на вероятность В, при условии А. Подставив все это в равенство, получаем правило Байеса:
Что это значит? Вспомним, что Р(гипотеза|данные), левая часть равенства, — это апостериорная вероятность — степень доверия гипотезе, уточненная после изучения доказательств. Например, уверенность в диагнозе после того, как стал известен результат анализа.
Р(гипотеза) в правой части равенства — это априорная вероятность, то самое «априори», степень доверия гипотезе до изучения данных. Насколько гипотеза убедительна или общепринята? Что нам пришлось бы предположить, не будь у нас тех новых данных, что теперь имеются? Если говорить о болезни, это была бы ее распространенность в популяции, то есть базовая оценка.
Р(данные|гипотеза) — это правдоподобие. «Правдоподобие» в байесовском смысле — не синоним вероятности; это оценка возможности появления данных, если гипотеза верна[218]. Если некто болен, насколько правдоподобно, что у него проявится некий симптом или анализ окажется положительным?
И наконец, Р(данные) — это полная вероятность появления данных во всех случаях, независимо от того, верна гипотеза или неверна. Ее иногда называют маргинальной вероятностью — не потому, что она незначительна, но потому, что суммарный итог по каждой строке (или столбцу) принято было записывать на полях (от margin, «поле страницы»), то есть это суммарная вероятность получения данных при условии, что гипотеза верна, и при условии, что она неверна. Легче запомнить другой термин — «распространенность данных». В случае медицинского диагноза это доля всех пациентов (как больных, так и здоровых) с определенным симптомом или с положительным результатом анализа.
Заменив алгебраическое равенство удобной для запоминания схемой, получаем:
В переводе с языка математики это звучит следующим образом: «Степень доверия гипотезе после изучения данных должна быть равна априорной уверенности в гипотезе, умноженной на правдоподобие появления данных при условии, что гипотеза верна, и деленной на суммарную распространенность данных при всех условиях».
В обычной жизни это работает так. Вам стал известен новый факт; как должна измениться ваша уверенность в гипотезе? Во-первых, доверяйте ей сильнее, если с самого начала она была неплохо обоснована, внушала доверие или походила на правду, то есть если высока ее априорная вероятность (первый множитель в числителе). Как неустанно твердят студентам-медикам преподаватели, если за окном раздается стук копыт, это, скорее всего, лошадь, а не зебра. Если пациент жалуется на боли в мышцах, скорее всего, у него грипп, а не болезнь куру (редкое заболевание, распространенное среди представителей племени форе в Новой Гвинее), даже если симптомы согласуются как с тем, так и с другим заболеванием.
Во-вторых, доверяйте гипотезе больше, если подобные данные встречаются особенно часто, когда она верна, то есть если высоко правдоподобие данных (второй множитель в числителе). Если к вам обращается пациент с кожей голубого оттенка, разумно будет предположить у него метгемоглобинемию, известную как болезнь голубой кожи; пятнистую лихорадку Скалистых гор разумно заподозрить у пациента из района Скалистых гор, который является на прием с сыпью и повышенной температурой.
В-третьих, понижайте уровень доверия гипотезе, если подобные данные в принципе встречаются часто — если высока распространенность данных (знаменатель дроби). Нас забавляет ипохондрик Ирвин, убежденный в диагнозе, который он сам себе поставил, основываясь на характерном для болезни печени отсутствии болевых ощущений. Да, правдоподобие отсутствия симптомов при условии, что он болен, велико (что немного увеличивает числитель), но ведь и распространенность данных огромна (большинство людей большую часть времени не ощущают дискомфорта в области печени), а значит, знаменатель взлетает до небес, минимизируя апостериорную вероятность, то есть степень доверия диагнозу, который поставил себе Ирвин.
Давайте посмотрим, как это работает с цифрами. Вернемся к примеру с онкологическим диагнозом. Частота, с которой заболевание встречается в популяции, 1 %, это наша априорная вероятность: Р(гипотеза) = 0,01. Чувствительность теста — это правдоподобие положительного результата анализа при условии, что пациент болен: Р(данные|гипотеза) = 0,9. Общая распространенность положительного результата анализа равна сумме вероятностей верного попадания для тех, кто действительно болен (90 % от 1 %, или 0,009), и ложной тревоги для тех, кто на самом деле здоров (9 % от 99 %, или 0,0891), что дает нам число 0,0981, которое мы округлим до 0,1. Подставив значения переменных в

