Сон. Почему мы спим и как нам это лучше всего удается - Питер Шпорк
Шрифт:
Интервал:
Закладка:
благодаря которым типичная модель, связанная с данным воспоминанием, вспыхивает в мозге всякий раз, как активируется хотя бы часть данной сети. Таким образом гиппокамп путем повторения временно сохраненной информации оставляет прочные следы в бесконечно сложной сети из многих миллионов нейронов. На следующий день, а также много лет спустя, достаточно крошечной отдаленной ассоциации — и воспоминание возвращается.
Виртуальное птичье пение
Что память образуется именно так — только предположение. Реальные процессы, вероятно, намного сложнее, чем эта упрощенная модель. Исследователь Ханс-Йоахим Маркович из Билефельдского университета пишет, что консолидация затрагивает не только гиппокамп и кору больших полушарий, но и другие структуры мозга и «вероятно, представляет собой многоступенчатый процесс». Тем не менее вышеописанная модель, судя по всему, не слишком далека от истины. И как раз то обстоятельство, что образование памяти на значительную часть происходит во сне, сейчас достаточно хорошо доказано.
Что люди легче вспоминают заученное после того, как поспят, известно давно. В 1924 г. американские психологи Джон Дженкинс и Карл Далленбах экспериментально доказали, что подопытные лучше воспроизводили бессмысленную последовательность слогов, если между заучиванием и проверкой им давали поспать. Этот результат за минувшее столетие был многократно подтвержден. Тот факт, что детям требуется намного больше сна, чем взрослым, тоже достаточно ясно указывает на то, что мозг нуждается в сне для обучения. Ведь если есть что-то, что дети делают значительно чаще, чем взрослые, то это обработка новых впечатлений и приобретение двигательных навыков.
Реальную картину механизма памяти в спящем мозге нейробиологи смогли представить себе лишь в 1994 г. Тогда американцам Мэтью Уилсону и Брюсу Мак-Нотону из Аризонского университета удался потрясающий эксперимент: они вживили в мозг трем крысам одновременно 12 электродов. Каждый электрод имел несколько принимающих каналов и мог регистрировать сразу целую группу сигналов. Таким образом ученым удалось путем сложной обработки данных одновременно прослушивать сотни единичных нейронов. Электроды были направлены точно на так называемые «нейроны места» в гиппокампе. Эти клетки возбуждались всякий раз, когда крысы запоминали определенные признаки окружающего пространства. Затем исследователи выпустили грызунов в лабиринт и стали регистрировать силу и продолжительность возбуждения нейронов места.
Самое интересное началось, когда животные первый раз после эксперимента заснули и вошли в стадию глубокого сна: «Группы нейронов, одновременно активизировавшиеся во время обследования лабиринта, во время сна также возбуждались синхронно», — вспоминает МакНотон. Во время последнего сна перед началом эксперимента рисунок возбуждения в гиппокампе подопытных крыс был совершенно другим.
Мэтью Уилсон, сотрудник Массачусетского института технологии (Кембридж, США) резюмирует полученные результаты так: «Во сне крысы снова проходили лабиринт. Не хватало только мышечного движения». Правда, все происходило намного быстрее, чем в реальности, «как будто магнитофон включили на перемотку», — говорит Мак-Нотон. И неудивительно: «если бы животные стали повторять впечатления в режиме реального времени, у них не осталось бы времени на бодрствование».
Что эти результаты верны и для других видов животных и систем памяти, подтвердилось в 2000 г., когда биолог Дэниэл Марголиаш из Чикагского университета опубликовал отчет об экспериментах с зебровыми амадинами. Эти певчие птички семейства вьюрковых ткачиков в молодости целый день упражняются в пении и при этом бессознательно заучивают правильную, так называемую сенсомоторную, связь между движениями тела, например, положением клюва, и производимыми звуками.
Модель корреляции в мозгу крысы: В сети из 42 нейронов гиппокампа в мозгу крыс (точки) во время глубокого сна после эксперимента с лабиринтом особенно часто одновременно активизируются те же клетки, что и во время самого эксперимента (жирные линии). Во время глубокого сна до эксперимента картина была иной.
Тетрис для науки
По сей день никому не удалось доказать, что наша сознательная, эксплицитная память действительно нуждается в сне. Это объясняется просто, говорит Ян Борн: «Декларативное обучение требует времени!». Информация с регулярными промежутками извлекается из гиппокампа на протяжении нескольких дней, а то и недель — эксперимент по лишению сна такой продолжительности просто невозможен. Кроме того, бодрствующий мозг, вероятно, тоже вносит свою долю в закрепление новых слов, формул или событий. «И все же проведенные исследования ясно показывают, что как минимум значительная часть долговременной декларативной памяти возникает во сне», — говорит Борн. Это и понятно, поскольку во время сна мозгу не приходится сосредотачиваться на многих других вещах, как во время бодрствования.
Гораздо яснее для ученых система процедурной памяти, сохраняющей автоматически заученные процессы. Здесь нет необходимости в буферном хранилище вроде гиппокампа, поскольку все, чему мы обучаемся в основном автоматически — двигательные навыки и связанные с ними ощущения, например езда на велосипеде, бег на лыжах или разыгрывание фортепьянной пьесы, — мы тренируем прямым, в большой степени бессознательным, как можно чаще повторяемым упражнением. Большая часть такого рода информации передается в долговременную память, видимо, лишь во время последующего сна. Более простые движения сохраняются в мозжечке, а сложные автоматизированные навыки — и в большом мозге.
Информацию, как правило, можно пожизненно востребовать в любой момент, даже не задумываясь. Всякий, кто в детстве научился ездить на велосипеде или плавать, в преклонном возрасте без проблем владеет этими навыками. Поэтому специалисты называют эту память имплицитной.
Мозг во сне повторяет процедурную проработку, что доказали, в частности, вышеупомянутые чикагские эксперименты с зебровыми амадинами. Но самое главное — новейшие исследования с участием люей показали, как важен для этого вида памяти первый сон после тренировки. Похоже, что незакрепленные бессознательные воспоминания, ввиду отсутствия подобной гиппокампу буферной системы, сохраняются не более 30 ч.
Роберт Стикголд, нейрофизиолог из Гарвардской медицинской школы в Бостоне, в 2000 г. экспериментировал с людьми, которые днем должны были упражняться в компьютерной игре тетрис. Главное в этой игре — как можно быстрее и ловче поворачивать спускающиеся по монитору геометрические фигуры и расставлять их так, чтобы не образовывалось пустот. Вскоре после засыпания подопытных будили и спрашивали, что им снилось. Они описывали картины, явно связанные с компьютерной игрой.
Аналогичные сны видели и три пациента с амнезией. Из-за разрушения гиппокампа у них отсутствовала декларативная память, поэтому они не владели игрой и не помнили, как в ней упражнялись. Этот факт — явное свидетельство того, что процедурная память пациентов в этот момент работала, и два вида памяти работают независимо друг от друга. Иначе вместе с сознательной памятью у таких пациентов отказывала бы и бессознательная.
Тот же Стикголд доказал в 2000 г., как важен для имплицитной обработки информации сон в первую же ночь после упражнений. В ходе проведенного им эксперимента 133 человека тренировались в быстром и по возможности безошибочном распознавании ненадолго вспыхивающих на мониторе предметов. Если эксперимент повторялся в течение того же дня, никакого дополнительного эффекта тренированности не возникало. Зато после одной, двух и трех ночей со сном результаты заметно улучшались. Лишь 11 человек к третьему дню так ничему и не научились, хотя две последние ночи хорошо спали и пришли на тест выспавшимися. Этим людям по условиям эксперимента не давали спать в первую ночь после упражнений. «Одна-единственная ночь без сна надолго нарушает нормальный процесс обучения», — подытоживает Стикголд. Кто не ляжет спать в течение 30 ч после усвоения нового материала, трудился напрасно.
Ян Борн сделал из этих исследований вполне практический вывод: «Если вы берете уроки игры на фортепьяно или вождения автомобиля, не стоит после занятий отправляться кутить на всю ночь. В противном случае вы зря выбросили деньги за урок», — посоветовал он мне, когда я приезжал в его институт в Любеке.
В 2000 г. он вместе со своим коллегой Штеффеном Гайсом и другими сотрудниками провел такой же тест, как Стикголд, с целью проанализировать влияние различных фаз сна на обучение. Испытуемые, разбуженные после первой половины сна, в которой доминируют фазы глубокого сна, явно чему-то научились. Те, кому не мешали спокойно проспать и вторую половину, богатую эпизодами БС, показали еще лучшие результаты. Зато третью группу заставили упражняться посреди ночи, когда фаза глубокого сна была уже позади. После этого они получили уже только легкий и БС. Этим людям сон не принес никакой пользы в обучении.