- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Курс общей астрономии - П.И.Бакулин
Шрифт:
Интервал:
Закладка:
С многими богатыми скоплениями галактик связаны мощные протяженные источники рентгеновского излучения, природа которого, скорее всего, связана с наличием горячего межгалактического газа, подобного коронам отдельных галактик. Есть основания полагать, что скопления галактик в свою очередь также распределены неравномерно. Согласно некоторым исследованиям, окружающие нас скопления и группы галактик образуют грандиозную систему – Сверхгалактику. Отдельные галактики при этом, по-видимому, концентрируются к некоторой плоскости, которую можно называть экваториальной плоскостью Сверхгалактики. Только что рассмотренное скопление галактик в созвездии Девы находится в центре такой гигантской системы. Масса нашей Сверхгалактики должна составлять около 1015 масс Солнца, а ее диаметр порядка 50 Мпс. Однако реальность существования подобных скоплений галактик второго порядка в настоящее время остается спорной. Если они и существуют, то лишь как слабо выраженная неоднородность распределения галактик во Вселенной, так как расстояния между ними немногим могут превышать их размеры.
§ 176. Космогонические проблемы
Вопросы происхождения и эволюции небесных тел изучаются особым разделом астрономической науки, называемым космогонией. Космогонические проблемы имеют большое значение для развития научного мировоззрения в целом, и естественно, что они интересуют не только астрономов. Вместе с тем космогонические проблемы относятся к числу наиболее трудных астрономических задач. И в самом деле, то, что мы сейчас наблюдаем, – это моментальный снимок Вселенной. Можно определить с помощью этого снимка, какова она сейчас, но гораздо труднее судить о ее прошлом и будущем. И все-таки за последнее время удалось многое узнать о происхождении и развитии небесных тел. Для решения космогонических проблем использовались два основных подхода. Первый подход является чисто теоретическим: исходя из общих законов физики, можно определить, какие именно условия должны были существовать в прошлом, чтобы некоторое небесное тело приобрело именно те характеристики, которыми оно сейчас обладает, какой путь развития оно должно было пройти. Второй подход наблюдательный: сравнивая характеристики небесных тел, находящихся на разных стадиях развития, можно установить, в какой последовательности эти стадии сменяли друг друга. Второй подход можно применить, конечно, только к объектам многочисленным, таким как звезды, звездные скопления, газовые туманности, галактики. В случае планетной системы положение гораздо труднее: мы знаем только одну такую систему – Солнечную. Поэтому в планетной космогонии приходится пользоваться лишь первым подходом, и ее результаты менее уверенны.
§ 177. Происхождение и эволюция звезд
Сейчас твердо установлено, что звезды и звездные скопления имеют разный возраст, от величины порядка 1010 лет (шаровые звездные скопления) до 106 лет для самых молодых (рассеянные звездные скопления и звездные ассоциации). Мы будем подробно говорить об этом ниже. Многие исследователи предполагают, что звезды образуются из диффузной межзвездной среды. В пользу этого говорит положение молодых звезд в пространстве – они сконцентрированы в спиральных ветвях галактик, там же, где и межзвездная газопылевая материя. Диффузная среда удерживается в спиральных ветвях галактическим магнитным полем. Звезды этим слабым полем удерживаться не могут. Поэтому более старые звезды меньше связаны со спиралями. Молодые звезды образуют часто комплексы, такие, как комплекс Ориона, в который входит несколько тысяч молодых звезд. В комплексах наряду со звездами содержится большое количество газа и пыли. Газ в этих комплексах быстро расширяется, а это значит, что раньше он представлял собой более плотную массу. Сам процесс формирования звезд из диффузной среды остается пока не вполне ясным. Если в некотором объеме, заполненном газом и пылью, масса диффузной материи по каким-то причинам превзойдет определенную критическую величину, то материя в этом объеме начнет сжиматься под действием сил тяготения. Это явление называется гравитационной конденсацией. Величина критической массы зависит от плотности, температуры и среднего молекулярного веса. Расчеты показывают, что необходимые условия могут создаться лишь в исключительных случаях, когда плотность диффузной материи становится достаточно большой. Такие условия могут возникать в результате случайных флуктуаций, однако не исключено, что увеличение плотности может происходить и в результате некоторых регулярных процессов. Наиболее плотными областями диффузной материи являются, по-видимому, глобулы и «слоновые хоботы» – темные компактные, непрозрачные образования, наблюдаемые на фоне светлых туманностей. Глобулы имеют вид круглых пятнышек, «слоновые хоботы» – узких полосок, которые вклиниваются в светлую материю (рис. 243). Глобулы и «слоновые хоботы» являются наиболее вероятными предками звезд, хотя прямыми доказательствами этого мы не располагаем. В качестве косвенного подтверждения могут рассматриваться кометообразные туманности. Эти туманности выглядят подобно конусу кометного хвоста. В голове такой туманности обычно находится звезда типа Т Тельца – молодая сжимающаяся звезда. Возникает мысль, что звезда образовалась внутри туманности. В то же время сама туманность напоминает по форме и расположению «слоновые хоботы». Очень многое в процессе звездообразования остается не ясным. Не все исследователи соглашаются, например, с тем, что звезды образуются из диффузной межзвездной материи. Советский астроном акад. В. А. Амбарцумян считает, что звезды образуются в результате расширения плотных тел неизвестной природы, которые непосредственно не наблюдаются. Мы будем придерживаться в дальнейшем более общепринятой гипотезы образования звезд из межзвездной диффузной среды.
Рис. 243. Часть туманности NGC 6611 со «слоновым хоботом» и глобулами.
Итак, пусть по каким-то причинам облако межзвездной материи достигло критической массы и начался процесс гравитационной конденсации. Пылевые частицы и газовые молекулы падают к центру облака, потенциальная энергия гравитации переходит в кинетическую, а кинетическая энергия в результате столкновений – в тепло. Облако нагревается и вследствие увеличения температуры возрастает его излучение. Оно превращается в протозвезду (звезда в начальной стадии развития). Судя по тому, что молодые звезды наблюдаются группами, можно думать, что в начале процесса гравитационной конденсации облако межзвездной материи разбивается на несколько частей и одновременно образуется несколько протозвезд. Полный поток энергии, излучаемой протозвездой, определяется, как можно показать, обычным законом масса – светимость, но размеры протозвезды значительно больше. Поэтому температура ее поверхности много меньше, чем у обычной звезды такой же массы, и на диаграмме спектр – светимость протозвезды должны располагаться справа от главной последовательности. По мере сжатия протозвезды температура ее увеличивается, и она перемещается по диаграмме Герцшпрунга – Рессела сначала вниз, потом влево, почти параллельно оси абсцисс. Когда температура в недрах звезды достигает нескольких миллионов градусов, начинаются термоядерные реакции. Сначала «выгорает» дейтерий, а затем литий, бериллий и бор. Сжатие в результате выделения дополнительной энергии замедляется, но не прекращается совсем, так как эти элементы быстро оказываются израсходованными. Когда температура повышается еще больше, начинают действовать протон-протонные реакции (для звезд с массой, меньшей 1,5 M¤) или углеродно-азотный цикл (для звезд с большей массой). Эти реакции могут поддерживаться длительное время, сжатие прекращается и протозвезда превращается в обычную звезду главной последовательности. Давление внутри звезды уравновешивает притяжение, и она оказывается в устойчивом состоянии. ТАБЛИЦА 15 Время гравитационного сжатия звезд и их пребывания на главной последовательности
Время гравитационного сжатия сравнительно невелико. Оно зависит от массы протозвезды. Чем больше масса, тем быстрее протекает процесс гравитационной конденсации. Протозвезды, имеющие такую же массу, как Солнце, сжимаются за 108 лет. Время гравитационного сжатия для звезд разных классов приведено в табл. 16. Так как сжатие происходит быстро, наблюдать звезды в этой первой наиболее ранней стадии эволюции трудно. Предполагается, что в этой стадии находятся неправильные переменные звезды типа Т Тельца. Известно несколько рассеянных
звездных скоплений, состоящих из звезд классов О и В и переменных типа Т Тельца. На рис. 244 показана диаграмма «показатель цвета – звездная величина» для звездного скопления NGC 6530. Линия, идущая приблизительно по диагонали, отмечает положение главной последовательности. Звезды, имеющие показатель цвета (В – V)> 0, – это, главным образом, переменные типа Т Тельца. Они расположены справа от главной последовательности как раз там, где должны находиться сжимающиеся звезды. По-видимому, звезды скопления NGC 6530 образовались примерно 107 лет назад. Более массивные члены скоплений (О и В звезды) уже успели перейти на главную последовательность, менее массивные – еще находятся в фазе гравитационной конденсации. Звезды типа Т Тельца еще не пришли в состояние равновесия, и этим, вероятно, объясняется типичный для них неправильный характер изменения блеска. Эти звезды связаны с пылевыми туманностями, которые являются остатками первоначальных скоплений диффузной материи. Находясь на главной последовательности, звезды длительное время излучают энергию благодаря термоядерным реакциям, почти не испытывая каких-либо внешних изменений: радиус, светимость и масса остаются почти постоянными. Положение звезды на главной последовательности определяется ее массой. Ниже главной последовательности на диаграмме спектр – светимость проходит последовательность ярких субкарликов. Они отличаются от звезд главной последовательности химическим составом: содержание тяжелых элементов в субкарликах в несколько десятков раз меньше. Причина этого отличия, связанная с тем, что субкарлики являются звездами сферической составляющей, будет объяснена ниже. В результате термоядерных реакций, протекающих в недрах звезды, происходит постепенная переработка водорода в гелий, или, как говорят, «выгорание» водорода. Время пребывания на главной последовательности зависит от скорости термоядерных реакций, а скорость реакций-от температуры. Чем больше масса звезды, тем выше должна быть температура в ее недрах, чтобы газовое давление могло уравновесить вес вышележащих слоев. Поэтому ядерные реакции в более массивных звездах идут быстрее и время пребывания на главной последовательности для них меньше, так как быстрее расходуется энергия. В табл. 16 дано время пребывания на главной последовательности, вычисленное для звезд разных спектральных классов. Из таблицы видно, что звезды В0 остаются на главной последовательности менее 107 лет, в то время как для Солнца и звезд более поздних спектральных классов период пребывания на главной последовательности превышает 1010 лет. Ядерные реакции идут только в центральной части звезды. В этой области (конвективное ядро звезды) вещество все время перемешивается. При выгорании водорода радиус и масса конвективного ядра уменьшаются. Расчеты показывают, что звезда при этом перемещается по диаграмме спектр – светимость вправо. Более массивные звезды перемещаются быстрее, и в результате верхний конец главной последовательности постепенно отклоняется вправо. На рис. 245 показано, как с течением времени изменяется вид главной последовательности для некоторой группы одновременно образовавшихся звезд.

