- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Проклятые вопросы - Ирина Радунская
Шрифт:
Интервал:
Закладка:
Постепенно у физиков крепло сознание необходимости перемен.
ПОВОРОТ К ЛАЗЕРУВ 1917 году Эйнштейн сделал шаг, последствия которого он ещё не мог предвидеть. Шаг заключался в применении к атому Бора того статистического подхода, который сам Эйнштейн и польский учёный М. Смолуховский применили к расчётам таинственного броуновского движения — безостановочной пляске мельчайших частиц, плавающих в жидкости.
Эйнштейн заметил, что акты излучения и поглощения света должны подчиняться таким же вероятностным закономерностям, как радиоактивный распад. Каждый единичный акт непредсказуем и случаен, но в среднем проявляются чёткие закономерности, соответствующие объективным законам природы.
Он предположил, что в атомах, не подвергающихся внешним воздействиям, электроны переходят из состояний с более высокой энергией в состояние с более низкой энергией с вполне определённой вероятностью, обусловленной строением атома. Интенсивность излучения, связанного с такими спонтанными, самопроизвольными переходами, пропорциональна числу возбуждённых атомов, то есть атомов, находящихся в состоянии высокой энергии.
Если же атомы находятся в поле излучения, частота которого совпадает с одной из боровских частот, то вероятность электронного перехода, связанного с излучением или поглощением фотона этой частоты, пропорциональна интенсивности поля.
Эти два предположения имели два важнейших следствия.
Из них непосредственно вытекает формула Планка для излучения «чёрного тела», устранившая опасность «ультрафиолетовой катастрофы». Это давало уверенность в правоте Эйнштейна.
Но второе следствие настораживало.
Из предположений Эйнштейна неизбежно получалось, что фотон уносит из атома не только энергию, но и импульс, что элементарный акт излучения света не может быть описан сферической волной. Так в науку вновь вошла необходимость объединения волновых и корпускулярных свойств света, ибо теперь фотоны, обретя импульс, ещё ближе уподобились частицам. Теперь в физику по-настоящему вторглись законы случая, и их уже нельзя рассматривать просто как путь упрощения слишком громоздких вычислений в задачах о множестве частиц. Вероятностные законы оказались связанными с элементарными единичными актами. Лишь много позднее выяснилось, что всё это связано с лазерами, что теория лазеров уже работает, ещё неосознанно, но уже подготавливая почву для озарения. Пока учёные это осознали, в науке должно было произойти много важных событий.
СУМАСШЕДШИЙ?Шёл 1911 год. В науку входил один из интереснейших умов. Луи де Бройль начал свою самостоятельную жизнь с получения степени бакалавра, а затем лиценциата литературы по разделу истории. Но его влекла деятельность, которой посвятил себя его брат. И вот Луи, через брата, знакомится с докладами, обсуждавшимися на физическом конгрессе. Доклады были посвящены квантам. Кванты решили судьбу юноши.
Начал он с того, что стал работать в лаборатории своего брата. Первые его труды посвящены рентгеновскому излучению и фотоэффекту. Истории было суждено прервать своеобразный старт — началась Первая мировая война. Историк — физик — солдат пять лет отдаёт армии. А вернув шись в 1919 году из армии, он полностью подпадает под обаяние эйнштейновской теории световых квантов — фотонов. Его подхлестнуло именно то, что маститым немецким физикам казалось подозрительным в дерзкой теории.
Эйнштейн и не претендовал на то, чтобы объяснить при помощи квантов появление цвета в тонких плёнках, например радужной окраски разлитой по воде нефти, и других интерференционных явлений. Если считать, что свет — только частицы, этого не объяснишь. Он был слишком глубоким физиком, чтобы идти облегчённым путём. То была бы грубая работа.
Творец фотонов оставлял эту задачу волновой оптике. Ей было легче, так как исходила она из того, что свет — это волны. Он исходил из двойственности природы света. В одних условиях свет существует как непрерывная волна, а в других он, не менее реально, выступает как поток квантов, которые позднее получили название фотонов.
Эйнштейн был одинок в своём подходе к природе света. Даже впоследствии, когда он после создания теории относительности был поставлен рядом с Ньютоном, квантовая теория света осталась непонятой и забытой. Она помогла Бору в создании теории атома, но и это не обеспечило ей признания. Сам Эйнштейн, поглощённый всё более трудными задачами, возникавшими по мере развития его основного труда, не возвращался к этим работам.
Луи де Бройль подхватил идеи Эйнштейна. Ещё в ранней молодости его поразила аналогия уравнений, управляющих движением волн и поведением сложных механических систем. Теперь же непостижимое появление целых чисел в правилах, позволяющих вычислять орбиты атома водорода, навело его на мысль о родстве этих правил с законами волнового движения, в которых постоянно возникают простые целые числа.
Руководствуясь идеями Эйнштейна, в частности его соображениями о связи массы и энергии, вытекающими из теории относительности, де Бройль проделал для частиц работу, обратную той, которую Эйнштейн провёл для волн света. Эйнштейн связал электромагнитные волны с частицами света; де Бройль связал движение частиц вещества с распространением волн, которые он назвал волнами материи. В конце лета 1923 года в «Докладах Французской академии наук» появились три статьи, три шедевра, в которых были заключены основные принципы новой волновой механики.
А в докторской диссертации де Бройля идеи волновой механики были развиты и отшлифованы так тонко, что жюри знаменитой Сорбонны, в состав которого входили такие корифеи французской науки, как Поль Ланжевен и Жан Перрен, без колебаний оценило её «как бриллиант первой величины», а Эйнштейн рекомендовал прочесть её всем физикам, хоть и кажется, что писал её сумасшедший.
НЕ ДУМАЯЧерез год двадцатипятилетний геттингенец Вернер Гейзенберг опубликовал свою знаменитую матричную механику. Она была удивительным порождением интуиции одного учёного и в известном смысле освобождала других от необходимости… думать… Основной труд уходил на освоение непривычных математических методов. Дальше всё шло удивительно просто. Нужно было записать условия очередной задачи в символической матричной форме (для этого, конечно, нужно поломать голову). Но дальше можно действовать по раз навсегда разработанным правилам. В конце этой почти механической работы возникало решение. Разглядеть его среди леса формул всегда помогал опыт.
Молодой профессор из Цюриха Эрвин Шрёдингер весной 1926 года прорубил ещё одну просеку в дремучем лесу микромира. Шрёдингер получил замечательное уравнение, известное теперь под названием волнового и носящее его имя. Он показал, что в сложных случаях, когда в процессе участвует сразу много частиц, соответствующая волна, описывающая их движение, становится очень сложной. Она уже не помещается в пределах обычного трёхмерного пространства. Для её описания нужно вообразить пространство со многими измерениями!
Теперь в физику микромира прочно вошло абстрактное многомерное пространство, дотоле бывшее многолетней вотчиной классической математики.
Так в результате вдохновенной работы де Бройля, Гейзенберга и Шрёдингера родилась новая квантовая механика — удивительное, не совсем понятное, заряженное математической взрывчаткой оружие для дальнейших походов в микромир.
В преодоление трудностей, возникавших на пути триединой теории, включались всё новые силы. Но главное направление здесь вело не к лазерам, а к атомной бомбе и атомной электростанции. Поэтому мы оставим этот путь и вернёмся назад, чтобы проследить за развитием других идей, имеющих непосредственное отношение к нашей теме.
СКАЧОК
Отступим к началу нашего века, когда в науку входил юноша из Одессы Леонид Мандельштам.
В эти столь бурные годы Мандельштама привлекли работы Планка, стремившегося понять, почему свет, проходящий через прозрачную, незамутненную среду, ослабляется. Причиной могло быть только рассеяние. Но что может рассеивать свет в чистом, однородном газе?
И как быть с опытами, безупречными опытами, с удивительной точностью подтверждавшими ранее господствующую теорию рассеяния? Всё в ней представлялось бесспорным и как бы протестовало против вмешательства.
Мандельштама не смутило совпадение результатов опытов с прежней теорией. Об одном из таких опытов он написал в 1907 году: «Это совпадение должно рассматриваться как случайное».
Целым рядом работ Мандельштам показал, что беспорядочное движение молекул не делает газ однородным. В реальном газе всегда имеются мельчайшие разрежения и уплотнения, образующиеся в результате хаотического теплового движения. Вот они-то и приводят к рассеянию света, так как нарушают оптическую однородность воздуха.

