- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Модели разума. Как физика, инженерия и математика сформировали наше понимание мозга - Lindsay Grace
Шрифт:
Интервал:
Закладка:
Шеннон решил использовать основание два для своего определения информации. Поэтому, чтобы вычислить информацию, содержащуюся в символе, нужно спросить: "До какой степени нужно возвести в степень два, чтобы получить обратную величину вероятности символа? Если взять наряд нашего студента - джинсы и футболку - как символ, который появляется с вероятностью 0,99, то его информативность равна log2(1/0,99), что составляет примерно 0,014. Костюм, который появляется с вероятностью 0,01, напротив, имеет информационное содержание log2(1/0,01) или примерно 6,64. Опять же, чем ниже вероятность, тем выше информация2.
Но Шеннона интересовала не только информация, содержащаяся в одном символе, - он хотел изучить информационное содержание кода. Код определяется набором символов и частотой использования каждого из них. Поэтому Шеннон определил общую информацию в коде как сумму информации всех его символов. Важно, что эта сумма взвешена - то есть информация каждого символа умножается на частоту использования этого символа.
Согласно этому определению, общий объем информации, содержащейся в одежде студента, составит 0,99 x 0,014 (от джинсов и футболки) + 0,01 x 6,64 (от костюма) = 0,081. Это можно считать средним количеством информации, которое мы получаем каждый день, видя наряд студента. Если бы студент решил носить джинсы 80 процентов времени, а костюм - 20 процентов, его код был бы другим. И среднее содержание информации было бы выше: 0,80 x log2(1/0,80) + 0,20 x log2(1/0,20) = 0,72.
Шеннон дал название средней скорости передачи информации в коде. Он назвал ее энтропией. Официально он объяснил это тем, что его определение информации связано с понятием энтропии в физике, где она служит мерой беспорядка. С другой стороны, Шеннон, как известно, утверждал - возможно, в шутку, - что ему посоветовали назвать свою новую меру энтропией, потому что "никто не понимает энтропию", и поэтому Шеннон, скорее всего, всегда будет выигрывать споры о своей теории.
Энтропия Шеннона отражает фундаментальный компромисс, присущий максимизации информации. Редкие вещи несут наибольшую информацию, поэтому вы хотите, чтобы их было как можно больше в вашем коде. Но чем чаще вы используете редкий символ, тем менее редким он становится. Эта борьба полностью определяет уравнение для энтропии: уменьшение вероятности символа приводит к увеличению логарифма его обратной величины - положительный вклад в информацию. Но затем это число умножается на ту же самую вероятность: это означает, что уменьшение вероятности символа приводит к уменьшению его вклада в информацию. Таким образом, чтобы максимизировать энтропию, мы должны сделать редкие символы настолько распространенными, насколько это возможно, но не более распространенными.
Использование Шенноном логарифма с основанием два делает единицей информации бит. Бит - это сокращение от двоичного разряда, и, хотя в работе Шеннона впервые встречается это слово, не он его придумал (Шеннон приписывает эту честь своему коллеге из Bell Labs Джону Тьюки). У бита как единицы информации есть полезная и интуитивно понятная интерпретация. В частности, среднее количество битов в символе равно количеству вопросов "да-нет", которые нужно задать, чтобы получить этот объем информации.
Например, попробуйте выяснить время года, в которое родился человек. Вы можете начать с вопроса: "Это переходное время года?". Если они ответят "да", вы можете спросить: "Сейчас весна?". Если они ответят "да", вы получите ответ; если "нет", у вас все равно будет ответ: осень. Если они ответили "нет" на первый вопрос, вы можете пойти противоположным путем - спросить, не родились ли они летом, и т. д. Независимо от ответа, чтобы получить его, нужно задать два вопроса "да" или "нет". Уравнение энтропии Шеннона согласуется с этим. Если предположить, что люди с одинаковой вероятностью рождаются в каждый сезон, то каждый из этих "символов" сезона будет использоваться в 25 процентах случаев. Таким образом, информация в каждом символе равна log2(1/0,25). Таким образом, среднее количество бит на символ равно двум - столько же, сколько и количество вопросов.
Часть разработки хорошей системы связи заключается в создании кода, который содержит много информации на один символ. Чтобы максимизировать среднюю информацию, которую предоставляет символ в коде, нам нужно максимизировать энтропию кода. Но, как мы видели, определение энтропии имеет внутреннее противоречие. Чтобы максимизировать ее, редкие символы должны быть нормой. Как лучше всего удовлетворить это, казалось бы, парадоксальное требование? На этот непростой вопрос, как оказалось, есть простой ответ. Чтобы максимизировать энтропию кода, каждый из его символов должен использоваться одинаково часто. У вас пять символов? Используйте каждый из них пятую часть времени. Сто символов? Вероятность использования каждого из них должна составлять 1/100 часть. Если сделать каждый символ одинаково вероятным, это уравновесит компромисс между редким и обычным общением.
Более того, чем больше символов в коде, тем лучше. Код с двумя символами, каждый из которых используется половину времени, имеет энтропию в один бит на символ (это имеет смысл в соответствии с нашим интуитивным определением бита: если представить, что один символ означает "да", а другой - "нет", то каждый символ отвечает на один вопрос "да" или "нет"). С другой стороны, код с 64 символами, каждый из которых используется одинаково, имеет энтропию шесть бит на символ.
Как бы ни был важен хороший код, кодирование - это только начало пути сообщения. В концепции связи Шеннона, после того как информация закодирована, ее еще нужно отправить по каналу к месту назначения. Именно здесь абстрактные цели передачи сообщений сталкиваются с физическими ограничениями материи и материалов.
Рассмотрим телеграф. Телеграф передает сообщения с помощью коротких импульсов электрического тока, проходящих по проводам. Сочетания коротких точек и длинных тире определяют алфавит. Например, в американской азбуке Морзе точка и тире обозначают букву "А", а две точки и тире - "U". Физические ограничения и несовершенство проводов, по которым передавались эти сообщения, особенно на большие расстояния или под океанами, накладывали ограничения на скорость передачи информации. Телеграфисты, набиравшие текст слишком быстро, рисковали столкнуть точки и тире вместе, создав нечленораздельный "боров Морзе", который был бы бесполезен для его получателя. На практике операторы могли безопасно отправлять в среднем около 100 писем в минуту.
Чтобы создать практическую меру скорости передачи информации, Шеннон объединил присущую коду скорость передачи информации с физической скоростью передачи по каналу, по которому он передается. Например, код, содержащий пять битов информации на символ и передаваемый по каналу, который может передавать 10 символов в минуту, будет иметь

