Революция в физике - Луи де Бройль
Шрифт:
Интервал:
Закладка:
Огромное большинство физиков того времени находило, что произвести подобную замену далеко не так просто.
Гейзенберг должен был найти также способ введения в свою теорию кванта действия, И снова он пошел по пути, которым постоянная hбыла введена в классические уравнения старой квантовой теорией, и попытался с помощью принципа соответствия перенести этот способ введения hв свою новую механику.
Результат оказался очень точным, хотя на первый взгляд несколько удивительным. Нужно было предположить, что при перемножении матрицы, соответствующей координате, на матрицу, соответствующую канонически сопряженной компоненте импульса, порядок множителей не безразличен и что разность между произведением этих двух величин, взятых в одном порядке, и их произведением в противоположном порядке равна постоянной Планка, умноженной на некоторое число.
Все другие канонические переменные квантовой механики коммутируют между собой, т е. их произведение не зависит от порядка сомножителей. Только когда рассматриваются произведения двух величин, канонически сопряженных в смысле аналитической механики, в результате их перестановки получается величина, отличающаяся от исходной так, что их разность пропорциональна h. В макроскопических явлениях, где величиной hможно пренебречь, все механические величины можно считать коммутирующими, и мы снова, как и должно быть, возвращаемся к классической механике. Такой путь введения постоянной Планка с помощью коммутационных соотношений, хотя и естественный, с точки зрения Гейзенберга, может показаться несколько странным. Ниже мы увидим, как можно его объяснить в волновой механике.
Уточнив таким образом свойства матриц, представляющих физические величины, Гейзенберг должен был вывести уравнения, описывающие их изменение со временем: иными словами, он должен был построить динамику. Он сделал это, смело предположив, что его матрицы подчиняются уравнениям, по виду совпадающим с уравнениями классической механики.
Согласно этой гипотезе для матриц можно написать канонические уравнения Гамильтона.
Однако эта идентичность динамических уравнений скорее кажущаяся, чем реальная, ибо в классической механике в уравнениях фигурируют обычные числа, а в механике Гейзенберга – матрицы. В этом корень важнейших различий. Тем не менее можно показать, что канонические уравнения квантовой механики позволяют вновь получить принцип сохранения энергии, и они не противоречат боровским соотношениям для частот. Кроме того, для атомных систем эти уравнения по причинам, на которых мы не можем здесь останавливаться, удовлетворяются лишь для некоторых определенных значений энергии. Итак, мы снова приходим к существованию стационарных состояний с квантованной энергией, и у нас есть метод вычисления этих энергий.
Сразу применив свой метод к самым классическим квантовым системам, Гейзенберг и его соратники вычислили квантованную энергию линейного осциллятора, атома водорода и т д. Часто их результаты оказывались в полном согласии со старой квантовой теорией, однако иногда совершенно от них отличались. Гак, например, в случаях линейного осциллятора, они получили вместо закона целых квантов, который предполагал Планк, закон полу целых квантов, о котором мы уже упоминали и который лучше согласуется с экспериментальными фактами.
Воодушевленные очень интересными результатами квантовой механики, строгостью и точностью ее формализма, толпы теоретиков бросились вслед Гейзенбергу, внося в его теорию все новые важные дополнения.
Шредингер опубликовал свою работу и с изумлением заметил, что метод квантования волновой механики ведет к тем же результатам, что и метод квантовой механики, хотя они различаются по духу. Он интуитивно почувствовал, что этот факт не случаен, и блестяще сумел объяснить его.
3. Тождество квантовой и волновой механики
В своей работе Шредингер руководствовался идеей, что с помощью волновой функции волновой механики можно построить величины, обладающие свойствами матриц квантовой механики. При этом квантовая механика оказывается методом, позволяющим вычислять эти величины и оперировать ими, не обращаясь явно к волновой функции. Таким образом, можно доказать идентичность этих двух форм новой механики.
Изучая проблему квантования в волновой механике, находят различные стационарные волны рассматриваемой системы и вычисляют соответствующие волновые функции. Эти функции называются собственными функциями системы: они образуют некую, как будем предполагать, дискретную последовательность. Во многих важных случаях это действительно так. Допустим теперь, что мы скомбинировали эти собственные функции во всевозможные пары. Получим, таким образом, два типа пар: пары, построенные из одинаковых собственных функций, и пары из различных собственных функций. Первые относятся к одному стационарному состоянию, вторые – к двум различным стационарным состояниям. Поэтому можно считать, что последние описывают переход между этими двумя стационарными состояниями.
Таким образом, из этих парных комбинаций волновых функций получим набор элементов, который можно поставить в однозначное соответствие с элементами гейзенберговской матрицы. Но поскольку, согласно Гейзенбергу, каждой физической величине отвечает своя матрица, то, следовательно, для каждой величины мы должны образовать разные комбинации собственных функций.
Следовательно, возникает существенно новая и важная идея. Она заключается в том, что каждой физической величине необходимо поставить в соответствие некий символ операции, определенный оператор. Для того чтобы, не задумываясь, написать уравнение распространения волны, связанной с частицей, Шредингер заменил компоненты импульса оператором, пропорциональным производным по сопряженным координатам, причем множитель пропорциональности содержал постоянную h.
Естественно также предположить, что каждой координате соответствует умножение на эту координату. Поскольку все механические величины. Характеризующие поведение частицы, можно выразить с помощью координат и компонент импульса (сопряженных импульсов Лагранжа), то только что сформулированные правила позволяют нам найти оператор, соответствующий любой механической характеристике частицы. Если образовать оператор энергии, то получим оператор Гамильтона, с которым мы встречались при построении волнового уравнения. Обобщая этот вывод, приходим к принципу, согласно которому всем физическим величинам сопоставляются операторы. Этот принцип положен в основу новой механики.
Теперь уже можно понять, как Шредингер построил матрицы, которые он хотел отождествить с матрицами квантовой механики. Пусть имеется некоторая механическая величина, характеризующая движение частицы и соответствующий ей оператор, правило построения которого мы знаем. Каждой паре собственных функций рассматриваемой системы можно, таким образом, сопоставить величину, образованную следующим образом. Оператор, о котором идет речь, действует на одну из функций пары, результат множится на комплексно сопряженное значение другой функции и интегрируется по всему пространству.
Повторяя подобную операцию со всеми парами собственных функций, получаем систему элементов, одни из которых относятся к одному стационарному состоянию, другие – к двум стационарным состояниям, т е. к переходам. Эти элементы располагают в таблицу, причем элементы первого типа помещают на диагонали (диагональные элементы). Каждой механической величине сопоставляется, таким образом, матрица. Вопрос теперь заключается лишь в том, можно ли отождествить эти матрицы и матрицы квантовой механики.
Ответ на этот вопрос утвердительный. Шредингер прежде всего показал, что матрицы, построенные только что описанным способом, должны удовлетворять, как и матрицы Гейзенберга, правилам сложения и перемножения алгебраических матриц. Кроме того, несколько странный путь, которым постоянная Планка проникла в квантовую механику, получил в концепции Шредингера немедленное объяснение. Произведение двух операторов, вообще говоря, не коммутирует: полученный результат зависит от порядка сомножителей.
Тем не менее во многих случаях два оператора, соответствующих механическим величинам, коммутируют. Однако имеется исключение, когда этими величинами являются координата и сопряженная компонента импульса, ибо оператор, отвечающий последнему, пропорционален производной по сопряженной координате, а операция «производная по некоторой переменной» не коммутирует, как легко видеть, с операцией умножение на эту переменную.
Отсюда немедленно следуют сформулированные Гейзенбергом правила перестановки. Чтобы завершить отождествление рассматриваемых матриц, остается лишь показать, что матрицы волновой механики подчиняются каноническим уравнениям квантовой механики. Вот как это было сделано: Шредингер показал, что из канонических уравнений строго следует, что волновые функции, использованные при конструировании матриц, обязательно удовлетворяют волновым уравнениям волновой механики. Короче говоря, канонические уравнения квантовой механики эквивалентны волновым уравнениям волновой механики.