Предчувствия и свершения. Книга 2. Призраки - Ирина Львовна Радунская
Шрифт:
Интервал:
Закладка:
Но Галилей не останавливается на этом. Делая наклонную плоскость все более крутой, Галилей приближал условия движения тел по ней к свободному падению. В пределе, когда плоскость вертикальна, она не влияет на падение тела, летящего вдоль нее. Так Галилей не только смоделировал действие различных по величине и постоянных во времени сил, но и впервые осуществил на опыте переход к пределу. Он смог по желанию изменять величину действующей силы от ее наибольшего значения до нуля, когда плоскость становится горизонтальной.
Теперь стала яснее причина того, почему период колебания маятника зависит только от длины подвеса, а не от величины груза. Ведь груз маятника как бы падает по дуге окружности, а ее можно представить совокупностью множества плавно переходящих одна в другую прямых, лежащих на плоскостях, наклон которых постепенно изменяется. И так как скорость, а значит, и время падения не зависят от веса тела, то и период колебания маятника не связан с весом его груза, а только с длиной нити, к которой подвешен груз. Но маятник, практически свободный от трения, позволяет еще проще наблюдать законы движения. Галилей предлагает вбить гвоздь точно под точкой подвеса маятника между нею и грузом и, сохраняя нить натянутой, отклонить груз в сторону, поднимая его до уровня гвоздя. Отпущенный груз будет опускаться до направления отвеса по малой окружности, центр которой совпадает с гвоздем, а затем поднимется на исходную высоту по дуге большой окружности, определяемой полной длиной нити.
Величие этого простого опыта именно в его простоте. Галилей описал его очень подробно. В наших современных терминах этот опыт доказывает закон сохранения энергии в механических явлениях. Потенциальная энергия груза определяется только высотой его подъема и не зависит от формы пути. Потенциальная энергия переходит в кинетическую энергию движения и обратно. Этот опыт, если измерять достаточно точно, приводит еще к одному следствию: период колебания маятника не однозначно определяется длиной подвеса. Период зависит от размаха колебания. Такой зависимостью можно пренебречь только в том случае, если размахи достаточно малы, что очень важно для тех, кто вслед за Галилеем применял колебания маятника для измерения времени.
Отталкиваясь от подобных опытов, Галилей создал новую главу механики — динамику, науку о движении тел под действием сил, полностью отвергнув фантастические домыслы Аристотеля. Но перипатетики не сдавались. Теперь их атаке подвергалась вся совокупность достижений новой науки, а острие атаки было направлено в наиболее опасный пункт, на пропагандируемое Галилеем учение Коперника о движении Земли.
Мухи, бабочки и другие пассажиры
Возражения были основаны на том, что все механические явления свидетельствуют о неподвижности Земли. Если бы Земля вращалась, птицы, по убеждению аристотелианцев, отставали бы от ее движения. Тяжелые тела должны падать наклонно, а пушки стрелять на запад дальше, чем на восток. Эти доводы казались неоспоримыми. Здесь в единый союз объединилось множество не достаточно глубоко продуманных мысленных экспериментов и не очень точно поставленных реальных опытов.
На эти возражения Галилей отвечал своим гениальным мысленным экспериментом. Он приглашал оппонентов присоединиться к нему в плавании на воображаемом корабле. Корабле, который, как мы теперь знаем, идет по генеральному пути науки более трехсот лет. И будет идти вечно, лишь несколько уточнив свой курс. Вот что писал Галилей:
«Уединитесь с кем-либо из друзей в просторное помещение под палубой какого-нибудь корабля, запаситесь мухами, бабочками и другими подобными мелкими летающими насекомыми; пусть будет у вас там также большой сосуд с водой и плавающими в нем маленькими рыбками; подвесьте, далее, наверху ведерко, из которого вода будет капать капля за каплей в другой сосуд с узким горлышком, подставленный внизу. Пока корабль стоит неподвижно, наблюдайте прилежно, как мелкие летающие животные с одной и той же скоростью движутся во все стороны помещения; рыбы, как вы увидите, будут плавать безразлично во всех направлениях; все падающие капли попадут в подставленный сосуд… Заставьте теперь корабль двигаться с любой скоростью, и тогда (если только движение будет равномерным и без качки в ту или другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется корабль или стоит неподвижно… И причина согласованности всех этих явлений в том, что движение корабля обще всем находящимся в нем предметам, так же как и воздуху; поэтому-то я и сказал, что вы должны находиться под палубой…»
Приглашая читателя представить себе эти простые и наглядные опыты, Галилей не только отметал возражения против движения Земли, но провозглашал новый принцип, новую основу механики — принцип относительности. Нет такого механического явления или процесса, нельзя придумать ни одного механического опыта, который способен отличить состояние равномерного прямолинейного движения от состояния покоя. С точки зрения механики покой ничем не отличается от равномерного движения, происходящего по прямой. Законы природы тут едины. В каюте можно убедиться, что при задраенных иллюминаторах нет никакой возможности определить, неподвижен корабль или он равномерно движется по поверхности спокойного моря. Своим простым и гениальным мысленным экспериментом Галилей утверждал: движение по инерции само по себе определить невозможно. Для этого всегда необходимо второе тело. О движении корабля Галилея можно судить лишь по отношению к другому кораблю, берегу или звездам, А если нет ни звезд, ни берега, ни другого корабля? Можно ли найти в окружающем мире какие-то надежные ориентиры, абсолюты, какие-то особенности реальной структуры пространства и затем, пользуясь ими как верстовыми столбами, обнаружить свое движение в этом пространстве, не прибегая к наблюдениям положения звезд? Если же и таких особенностей нет, то можно ли создать прибор, способный обнаружить наше движение в пространстве, подобно тому, как лаг, брошенный в море, позволяет определить скорость движения корабля?
О том, как ученые искали возможность ориентироваться с «завязанными» глазами, как много раз возникали сомнения в справедливости принципа относительности Галилея, как потом он был расширен теорией относительности Эйнштейна, как ученые нашли было опору в абсолютном пространстве Ньютона, в эфире, затем отвергли его и совершенно неожиданно, уже в наши дни, обрели эту опору в «новом эфире», который никогда ничем не выдавал себя, но существование которого предчувствовал Эйнштейн, будет рассказано дальше. Будет рассказано и