Вселенная.Руководство по эксплуатации - Дэйв Голдберг
Шрифт:
Интервал:
Закладка:
Мы тут довольно бойко рассуждали о расширении пространства, но так ничего и не сказали о том, что же такое это самое пространство. Исаак Ньютон в своих Рrincipia Маthетаtiса много говорил о пространстве и придумал небольшой мысленный эксперимент, позволяющий пояснить, что это такое, на конкретном примере. Вернемся далеко назад — в главу 1, где Рыжий, Галилей и Эйнштейн (не обязательно в этом порядке) обнаружили, что наблюдатель не может определить, двигается он или покоится, если движение происходит равномерно. Играет роль исключительно динамика двух наблюдателей при их относительном движении.
Ньютон представил себе, что на скрученной веревке висит ведро, полное воды. Ведро удерживают в неподвижности, а затем отпускают, и веревка начинает раскручиваться, и ведро вертится. Поначалу вода хочет остаться на месте, и стенки ведра вертятся вокруг нее. Затем вступает в действие сила трения между водой и ведром, и вода начинает крутиться вместе с ведром. И при этом взбирается вверх по стенкам.
Да, понимаем — вы читаете и думаете: «Ну и что?»
Мы так много об этом разглагольствуем, поскольку к концу эксперимента Ньютона относительное движение между ведром и водой отсутствует — тем не менее мы можем сказать, что ведро и вода вертятся. Вот в чем вопрос: откуда ведро «знает», что оно вертится? Почему вода по-прежнему взбирается־ вверх по стенкам, если она никуда не движется относительно ведра?
Представьте себе одну простую вещь, которую вы увидите в любом научном музее: маятник Фуко. Маятник — это грузик, закрепленный на струне или тросе, который болтается туда-сюда, как в напольных или настенных механических часах. Маятник Фуко подвешивают так, чтобы он качался в любом направлении, куда захочет. Грузик раскачивают в одной плоскости — туда-сюда,— однако если наблюдать за ним достаточно долго, станет заметно, что он еще и вращается. То есть на самом деле маятник раскачивается в одной плоскости, а Земля под ним вращается. Каким-то образом маятник знает, как сохранить свою фиксированную ориентацию относительно пространства.
А лучше представьте себе, что наш старинный приятель Рыжий сидит в большой цилиндрической комнате, оборудованной ракетными двигателями,— нечто вроде аттракциона-центрифуги в парке развлечений.
Двигатели заводятся, барабан центрифуги начинает вращаться. Проходит совсем немного времени, и они останавливаются, но устройство в целом продолжает вращаться. Если вы видели «Космическую Одиссею-2001» или любой другой научно-фантастический фильм, где силу тяжести на космической станции симулируют вращением, то знаете, что произойдет: Рыжего начнет тащить вверх по стенкам87.
* А если он будет крутиться достаточно долго, его начнет тошнить вверх по стенкам. Гы-гы-гы.
Если во Вселенной нет ничего, кроме Рыжего с его центрифугой, у нас возникает вопрос: как можно сказать, что они вращаются? Относительно чего они вращаются? Попробуйте ответить на этот вопрос, избежав слова «пространство». Ведь пространство — это всего-навсего ничто, пустота, не так ли?
Философ Эрнст Мах примерно 240 лет спустя так сказал об этом в своей «Механике»: «Исследователь должен ощущать нужду в... знании о непосредственных связях, скажем, между массами во Вселенной. Они будут парить перед ним как идеальное представление о принципах материи в целом, из которого таким же образом вытекают все ускоренные и инерционные движения».
Нельзя сказать, чтобы это было точное научное определение того, как устроена Вселенная, но относительно вероятно, что мы забыли бы, что хотел донести до нас Мах, если бы не тот факт, что «принцип Маха» крайне занимал Эйнштейна (именно Эйнштейн так его и назвал). Он перефразировал это высказывание гораздо лаконичнее: «Инерция — это своего рода результат взаимодействия между телами».
По-прежнему сложно? А если так: «Тамошняя масса влияет на здешнюю инерцию»?
Ну и что? Конечно, далекая материя влияет на движение тел поблизости от нас. Именно это мы называем гравитацией. Но Мах говорил не об этом, и Эйнштейн усмотрел в его словах не это. Мах говорил, что если мы сравним нашу материю с далекими звездами, то уж как-нибудь сообразим, движемся мы или нет — по крайней мере ускоряемся мы или нет.
Принцип Маха в основном и вдохновил Эйнштейна на создание общей теории относительности. Основная идея заключалась в том, что «далекие звезды» в среднем можно считать неподвижными, и мы вправе сказать, что что-то движется или, если уж на то пошло, вращается, только относительно неподвижных звезд.
Верен ли принцип Маха?
Не обязательно. С математической точки зрения это решение уравнений Эйнштейна для пустого пространства. То есть для пространства, где материя как таковая отсутствует. Очевидно, что в таком случае не может быть и речи ни о каких далеких звездах, однако эйнштейновская специальная теория относительности все равно предсказывает, что если вы вдруг окажетесь в этой пустой вселенной, то «почувствуете», что вращаетесь.
Но ведь абсолютно пустая вселенная — это не правило, а исключение. В нашей Вселенной есть вещество. Общая теория относительности инкорпорирует во Вселенную материю. Это и есть то «свертывание» пространства, которое ощущается где угодно, в том числе и здесь.
Сразу после того, как Эйнштейн выдвинул общую теорию относительности, Джозеф Лензе и Ханс Тирринг из Венского университета заметили, что если взять достаточно массивное тело, скажем, черную дыру, и привести это тело во вращение, то пространство вокруг черной дыры тоже потянется за ней. Иначе говоря, если вы попытаетесь стоять на месте, покажется, будто вы вращаетесь. И это не просто догадка. С тех пор было запущено множество спутников, которые зарегистрировали вращение пространства, вызванное вращением Земли и Марса.
Мы хотим сказать, что на крупных масштабах получается, будто именно материя и «создает» пространство, даже если локальное пространство выглядит так, будто в нем ничего и нет.
IV. Насколько пусто пространство?На последних нескольких страницах нас увело в сторону эзотерики — мы слишком много рассуждали о природе пространства и обо всем таком прочем, а теперь пора перейти к более конкретным разговорам. Так вот, давайте договоримся: если вы согласитесь, что галактики во Вселенной в общем и целом никуда не движутся, а Вселенная вокруг них расширяется, мы сргласимся что можно иногда предаваться невинным фантазиям, что мы-де находимся в центре Вселенной. Для подтверждения согласия как следует встряхните эту книжку.
Мы сочтем, что вы тем самым сказали «да».
И даже можем проделать кое-какие корректные физические выкладки на основе «центропупистской» модели. Начнем с основного вопроса — замедляется расширение Вселенной или ускоряется?
Посмотрите на это с точки зрения Вселенной и постарайтесь проделать следующий эксперимент.
1. Выйдите на улицу с футбольным мячом.
2. Бросьте его вертикально вверх.
3. Быстренько отойдите в сторонку.
Сколько бы вы ни повторяли эксперимент, происходит одна старая история — что взлетает вверх, то падает вниз.
Разумеется, причиной того, что мы сумели построить ракеты, которые летают на Марс, стало следующее: если запустить мячик или ракету достаточно быстро, они вырвутся из гравитационного поля Земли. Скорость, с которой можно улететь с Земли, составляет примерно 40 тысяч километров в час — это называется «вторая космическая скорость». Ракеты взлетают в космос, поскольку двигаются быстрее.
А на Луне вторая космическая скорость составляет чуть больше 8000 километров в час. То есть если бы вы стояли на Луне и запустили сверхскоростной мячик со скоростью 16 тысяч километров в час, то обнаружили бы, что он вышел в открытый космос. А если бросить мяч с той же скоростью с Земли, то он в конце концов с размаху шлепнется обратно. Еще один пример для наглядности: вторая космическая скорость у Деймоса — спутника Марса — около 21 километра в час. Даже мы могли бы запустить мяч с Деймоса в открытый космос! Ну, наверное.
Так чем же Деймос так отличается от Земли? Массой. У Земли масса гораздо больше, а значит, больше и гравитация. Чем меньше масса, тем меньше сила гравитации, которая притягивает мяч обратно к планете (планетоиду, спутнику и т.п.), вот почему вторая космическая скорость у Деймоса такая маленькая. Для массивных предметов вроде галактик это тоже справедливо.
Если бы Вселенная была совершен до пуста (а это, к счастью для нас, совсем не так), то она бы расширялась вечно с абсолютно неограниченной скоростью. Не было бы материи, которая бы ее затормозила. Если бы у нас была настолько пустая вселенная, а мы поместили бы в нее немного вещества, то расширение бы немного замедлилось. Не забывайте: материя влияет на пространство, так что если бы мы поместили в эту вселенную целую кучу вещества, то она бы впоследствии схлопнулась.