- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Наукообразная чушь. Разоблачение мошенничества, предвзятости, недобросовестности и хайпа в науке - Стюарт Ричи
Шрифт:
Интервал:
Закладка:
Без рандомизации и ослепления даже исследования с громадным размером выборки могут вводить в заблуждение[453]. Но это вовсе не значит, что размер выборки не имеет значения. На самом деле это один из самых важных параметров, учитываемых при разработке эксперимента, и Маклауд с коллегами его тоже проверял. Сообщается ли в статье, как авторы решали, сколько животных включить в исследование? Об этом говорилось только в 0,7 % работ. Это удручает по двум причинам. Первую мы обсуждали раньше – p-хакинг. Не задавая предварительно размер выборки, исследователи оставляют себе возможность продолжать без конца собирать данные и анализировать их – снова и снова, снова и снова, пока не получится желаемое p-значение, меньшее 0,05. Вторая причина связана со смежным понятием, которое мы еще не обсуждали, – со статистической мощностью. Проще говоря, слишком много научных исследований слишком малы.
Представим себе идеальный препарат от головной боли, при любых условиях мгновенно ее снимающий. Нам не понадобились бы p-значения или статистические тесты, чтобы обнаружить этот сверхсильный эффект: мы замечали бы его всякий раз при сравнении хотя бы одного страдальца с головной болью, принимающего такие таблетки, с контрольным пациентом, получающим плацебо или менее эффективный препарат. Как если бы всякий мужчина на свете был выше абсолютно любой женщины, если вернуться к исследованию роста шотландцев из предыдущей главы. Конечно, на самом деле так не бывает: реальные статистические эффекты почти всегда меньше, и их труднее заметить. Реальная таблетка может уменьшить головную боль в среднем, скажем, на полбалла по шкале интенсивности мучений от 1 до 5. Невозможно было бы отделить такой небольшой эффект от случайного шума при сравнении двух человек, проводить подобное исследование было бы бесполезно. Даже если бы мы сравнивали две группы по десять участников, небольшой эффект мог бы запросто затеряться в случайном шуме. Например, кто-то по невнимательности обвел бы неправильную цифру в анкете, или ударился головой перед опросом, что усилило боль, или, наоборот, облегчил свое состояние, бросив пить.
Но если бы мы включили в исследование гораздо больше людей (человек пятьсот, принимающих таблетки, и пятьсот – плацебо), скромный эффект от таблеток было бы куда легче отделить от случайных отклонений. Так получилось бы потому, что эффект от лекарства проявлялся бы систематически: наш сигнал менялся бы в одну и ту же сторону у достаточно большого количества людей, принимающих препарат. А вот шум оставался бы случайным: у людей из любой группы по причинам, никак не связанным с тем, принимали ли они таблетки или плацебо, боль иногда становилась бы то слабее, то сильнее. Поскольку число участников велико, эти случайные отклонения компенсировали бы друг друга, так что среднее значение в крупной выборке было бы ближе к “истинному” эффекту. Статистик сказал бы, что при большем размере выборки исследование имеет более высокую статистическую мощность – больше шансов обнаружить разницу между группами, если новый препарат действительно работает лучше, чем плацебо.
Как мы обсуждали в предыдущей главе, p-значение характеризует вероятность, что мы получим результаты, похожие на наши (или даже более впечатляющие), если на самом деле никакого искомого эффекта нет, поэтому обычно мы хотим, чтобы оно оказалось как можно меньшим (по крайней мере ниже стандартного порога, обычно устанавливаемого на уровне 0,05). С другой стороны, статистическая мощность характеризует вероятность, что мы увидим статистически значимый сигнал, когда он действительно есть, поэтому мы хотим, чтобы она была как можно большей. Меньшие эффекты (слабые сигналы) гораздо сложнее обнаружить, когда у вас мало данных, поэтому обычно чем более тонкий эффект вы исследуете, тем крупнее вам требуется выборка.
Приведу конкретный пример. В 2013 году психолог Джозеф Симмонс со своими коллегами попросил онлайн-выборку участников ответить на ряд вопросов об их предпочтениях в таких областях, как еда и политика, а также собрал их основные анкетные данные (пол, возраст, рост и так далее)[454]. Затем он разделил выборку на различные группы (мужчины и женщины, либералы и консерваторы и тому подобное) и отметил, насколько сильно те различаются по целому набору переменных. Исходя из этих данных, Симмонс вычислил, сколько участников потребовалось бы, чтобы с уверенностью обнаружить данное различие, если не знать о его существовании заранее[455]. Например, оказалось, что можно надежно установить уже знакомую нам связь между ростом и полом – мужчины в среднем выше женщин – с помощью всего лишь шести мужчин и шести женщин из опроса; этот эффект, как мы знаем, велик и потому очевиден (наше исследование из предыдущей главы с участием двадцати человек имело, стало быть, высокую статистическую мощность). Еще один простой вопрос: склонны ли участники опроса более старшего возраста говорить, что они ближе к пенсионному возрасту? Так и есть, и Симмонс обнаружил, что для выявления этого факта потребовалось бы всего девять человек постарше и девять помоложе. Однако вот некоторые эффекты, для обнаружения которых понадобилось бы большее число участников:
• Любители острой пищи чаще уважают индийскую кухню (понадобилось бы двадцать шесть любителей острого и двадцать шесть человек, острое не любящих).
• Либералы считают социальную справедливость более важной, чем консерваторы (понадобилось бы по тридцать четыре человека от каждого политического лагеря).
• Мужчины в среднем весят больше, чем женщины (понадобилось бы по сорок шесть представителей каждого пола).
Цель этого упражнения состояла в следующем: заставить ученых реалистично оценивать величину искомого эффекта в любом конкретном исследовании, а значит, и размер выборки, необходимый для того, чтобы результаты получились значимыми. Если размер выборки у вас не будет достаточным для надежной проверки, весят ли мужчины больше женщин, скорее всего, статистической мощности вашего исследования не хватит и на то, чтобы обнаружить специфический тонкий эффект, подразумеваемый теорией, которую вы сформулировали.
Проводить исследование с низкой статистической мощностью – это

