- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Разумная жизнь во Вселенной - Юрий Мизун
Шрифт:
Интервал:
Закладка:
Остается неясным, как это звезда может сжаться «в точку». Этот вопрос очень непростой, но в то же время захва-тывающе интересный. Скажем сразу, что превратиться в точку звезда не может. Чрезмерное ее сжатие приведет к преобразованию ее в «черную дыру».
ЧЕРНЫЕ ДЫРЫ
Черные дыры имеют много весьма экстравагантных свойств, которыми не обладают другие звезды, даже очень экзотические, вроде нейтронных. Прежде всего, они являются звездами-невидимками. Для того чтобы можно было увидеть предмет, надо, чтобы от него к нам поступил видимый свет. Если предмет невидим в видимом свете, то надо иметь возможность зарегистрировать другое излучение, которое исходит от него: инфракрасное, рентгеновское, радио и т. д. Так вот, очень плотные звезды, которые были названы черными дырами, не посылают в окружающее их пространство абсолютно никакого излучения, поэтому они невидимы ни в каких лучах. Для наблюдателя их просто нет. Само по себе это уже очень странно, поскольку объект, имеющий определенную массу и температуру, что-то должен излучать. Тем более что температура черных дыр может достигать миллиардов градусов. В чем дело?
Такую ситуацию предвидел еще знаменитый французский математик и астроном П. Лаплас. Он описал ее в своей книге «Изложение систем мира», которая вышла в свет в 1795 году. Он рассуждал так. Если для того, чтобы оторваться от данного космического объекта, тело должно иметь скорость (первую космическую скорость) не меньше строго определенной величины, которая определяется массой этого объекта, то при слишком большой его массе скорость тела должна превысить скорость света для того, чтобы оторваться от объекта. Цифры говорят о следующем. Первая космическая скорость на Земле равна 7,2 км/с, на Луне — 2,4, на поверхности Юпитера — 61 и на Солнце — 620 км/с. На нейтронной звезде она должна достигать половины скорости света (150 тысяч километров в секунду). Таким образом, если масса звезды еще больше, то первая космическая скорость может превысить скорость света. Эти рассуждения применимы одинаковым образом и к телам, и к фотонам, то есть свету. Если масса звезды такова, что первая космическая скорость для нее должна быть больше скорости света, то свет от этой звезды исходить не может, он не может оторваться от нее, поскольку его скорость меньше первой космической скорости и не может быть ей равна (скорость света не может быть больше скорости света). Лаплас рассчитал, какая это должна быть масса небесного объекта (звезды или планеты). Он писал в указанной книге: «Светящаяся звезда с плотностью, равной плотности Земли, и диаметром в 250 раз больше диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения: поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми». Так что, казалось бы, объяснение первого и самого экзотического свойства черной дыры было найдено еще за полтора столетия до ее открытия. Но это и так, и не так. Если говорить строго, то ситуацию при столь больших силах гравитации надо описывать уравнениями не механики Ньютона, а теории тяготения Эйнштейна. Поэтому, строго говоря, расчеты Лапласа, основанные на космической механике, неверны, а лучше сказать, неточны. Но, тем не менее, массу и размеры звезды, которая должна сжиматься и превратиться в черную дыру, он указал правильно. Это случилось потому, что в данном случае в теории тяготения Эйнштейна справедлива та же формула, что и в теории Ньютона.
Все свойства черных дыр могут быть получены только из теории тяготения Эйнштейна, которая содержится в его общей теории относительности.
В начале нашего века, когда была создана Эйнштейном общая теория относительности, никто не был готов к ее восприятию, включая крупных ученых: слишком сильно на всех давил здравый смысл. Но прошедшие десятилетия сделали свое дело: теорию относительности изучают в средней школе, а в обыденном разговоре то и дело можно услышать: «Все в мире относительно». Так что же происходит при сильном сжатии звезды, если следовать теории относительности Эйнштейна?
При сжатии звезды (с сохранением ее массы) ее радиус уменьшается, а сила тяготения увеличивается. Это естественно. Когда радиус станет равным нулю, сила тяготения должна стать бесконечно большой. Это следует из теории тяготения Ньютона. По теории А. Эйнштейна сила притяжения становится бесконечно большой еще до того, как радиус уменьшится до нуля. То есть она нарастает с уменьшением радиуса быстрее, чем по теории Ньютона. Тот радиус, при достижении которого сила тяготения стремится к бесконечности, принято называть гравитационным радиусом. Подчеркнем еще раз, что по классическим представлениям он равен нулю.
Чем меньше масса тела, тем меньше его гравитационный радиус. Например, для нашей Земли он равен 1 сантиметру, для Солнца он равен 3 километрам. Различия между классической теорией и теорией относительности проявляются тогда, когда истинный радиус звезды близок к гравитационному радиусу. Пока различие между ними большое, нет необходимости привлекать теорию тяготения А. Эйнштейна, а можно спокойно пользоваться классическими уравнениями Ньютона, как это и делал П. Лаплас.
Теория относительности А. Эйнштейна устанавливает взаимоотношения между силами гравитации, течением времени и геометрическими свойствами пространства. Из нее следует, что в сильном гравитационном поле время замедляется относительно тех мест, где силы гравитации малы. Так, вблизи Земли время течет на одну миллиардную часть медленнее, чем в далеком космосе. Ясно, почему мы этого не замечаем. Даже вблизи массивных звезд это замедление времени не-ощутимо. Оно сразу дает о себе знать, когда масса звезды очень велика, а радиус очень мал, то есть при приближении к гравитационному радиусу. Но с силами гравитации связано не только время, но и пространство. В соответствии с теорией относительности пространство искривляется в гравитационном поле. Чем больше это поле, тем сильнее искривление. Приводится даже такое наглядное сравнение. Идеальную плоскость в пространстве делают из тонкой резиновой нервущейся пленки. На нее опускают металлический шар (черную дыру) и под его весом пленка прогибается. Так иллюстрируют искривление пространства под действием гравитационного поля массивной черной дыры. Надо сказать, что как замедление времени, так и искривление пространства вблизи сильных полей гравитации были измерены. В теории относительности существовавшие до этого по отдельности понятия абсолютного времени и абсолютного пространства объединены в одно понятие «пространство — время», поскольку они взаимосвязаны через поле гравитации.
Значение гравитационного радиуса было рассчитано по уравнениям теории тяготения Эйнштейна спустя месяц после опубликования теории в 1915 году немецким астрономом и математиком К. Шварцшильдом. С тех пор этот радиус носит его имя. Шварцшильд получил решения уравнений Ньютона для сферического невращающегося тела и основные свойства черной дыры, хотя в то время ни он, ни А. Эйнштейн, которому он передал работу, еще не подозревали о таком приложении результатов.
Пока силы гравитации сжимают звезду и ее радиус больше радиуса Шварцшильда, силам гравитации противодействуют силы внутреннего давления звезды. Эти силы неспособны противостоять сжимающей звезду силе гравитации в том случае, если ее радиус уменьшится до гравитационного радиуса. Произойдет сжатие вещества звезды, которое физики назвали релятивистским коллапсом. Собственно, и черные дыры длительное время назывались коллапсами и только в конце шестидесятых годов с легкой руки американского физика Д. Уилера их стали называть так.
Напрашивается вывод, что если каким-либо образом сжать звезду или планету до размеров ее гравитационного радиуса, то дальше усилия можно не прилагать — она скол-лапсирует сама и превратится в черную дыру. Для этого требуется немного — сжать, например, Солнце до радиуса в 3 километра.
Строгий расчет релятивистского гравитационного коллапса на основании решения уравнений общей теории относительности был выполнен в 1939 году американскими учеными Р. Оппенгеймером и Г. Волковым. Это было строгое, теоретически обоснованное предсказание существования черной дыры. Ясно, что ни Шварцшильд, ни тем более Лаплас не предсказали существование черных дыр со всеми их свойствами.
Границей черной дыры является сфера с радиусом Шварцшильда. Чем ближе к этой границе приближается излучающее тело, тем большее влияние на него оказывают силы гравитации. И не только на него, но и на излучение. Фотоны, составляющие это излучение, уменьшают свою энергию под действием силы гравитации черной дыры. Часть их энергии уходит на противоборство с этой силой. Уменьшение энергии фотона означает уменьшение его частоты.

