Русские электротехники - Михаил Шателен
Шрифт:
Интервал:
Закладка:
Уже в том же 1820 г. Араго (1786–1853 гг.) при помощи создаваемого электрическим током магнитного поля намагнитил кусок стали и построил таким образом первый электромагнит со стальным сердечником. Позже были построены электромагниты с сердечником из мягкого железа. В 1822 г. Фарадей установил, что проводник, по которому проходит электрический ток, стремится вращаться вокруг магнитного полюса. Это наблюдение Фарадея было в дальнейшем использовано изобретателями электродвигателей.
В 1820 же г. Ампер (1775–1836 гг.) открыл явление механического взаимодействия между токами и в 1823 г. дал полную математическую обработку своих наблюдений, положив, таким образом, начало новому отделу науки об электричестве — электродинамике… В 1824 г. Араго и Гамбей наблюдали успокаивающее действие медной или иной пластинки из проводящего материала на качающуюся магнитную стрелку, которая как будто погружалась в вязкую среду. Араго сделал из этого наблюдения вывод, что если медная пластинка может задерживать колебания магнита, то если эту пластинку заставить вращаться, она увлечет за собой магнитную стрелку. Опыт подтвердил предположение Араго, и, таким образом, было открыто явление, названное «магнетизмом вращения».
Другие наблюдатели видоизменили опыт и, вращая магнит, заставляли вращаться помещенный над ним медный диск. В этом последнем виде, на много лет позже, явление было использовано М. О. Доливо-Добровольским для создания электродвигателей с вращающимся магнитным полем. Причины явления, названного «магнетизмом вращения», были во время его открытия совершенно непонятны и были объяснены только после открытия Фарадеем в 1831 г. явления электромагнитной индукции.
В 1823 г. Зеебеком (1770–1831 гг.) было открыто явление термоэлектричества, вызвавшее и вызывающее до сих пор ряд попыток осуществить заманчивую идею непосредственного превращения тепловой энергии в электрическую.
В 1827 г. немецким физиком Омом (1787–1854 гг.) было найдено соотношение между силой тока, электродвижущей силой источника тока и величинами, характеризующими проводник, по которому проходит ток. Это был знаменитый «закон Ома». Только знакомясь с трудами в области электричества, появившимися до установления закона Ома и введения понятия об «электрическом сопротивлении» проводников, можно понять, какое значение имело открытие этого закона и какую ясность и точность этот закон позволил внести во все расчеты электрических цепей.
Последовавшее затем установление законов Кирхгофа для разветвленных цепей еще более облегчило понимание и расчеты явлений в сложных электрических цепях.
1831 год ознаменовался открытием Фарадеем явления электромагнитной индукции. По своему научному и практическому значению это открытие имеет не много себе равных. Открытие Фарадеем закона электромагнитной индукции не явилось делом случая, наоборот, оно было следствием долгих размышлений и многочисленных экспериментов. Если электрический ток в проводнике способен образовывать в окружающем его пространстве магнитное поле, то несомненно должно существовать и обратное явление, когда существование магнитного поля обуславливает появление электрического тока. Так рассуждал Фарадей и уже в 1822 г. записал в своем дневнике: «Обратить магнетизм в электричество». Это самозадание он выполнил только в 1831 г. В 1833 г. акад. Ленд (1804–1865 гг.) сделал в Петербургской академии наук доклад о своих исследованиях над взаимодействием токов и магнитов, результатом которых явилось установление закона, выражающего связь между направлениями токов и их электромагнитными и электродинамическими взаимодействиями. Закону этому, известному ныне под именем закона Ленца, сам Ленц дал название: «Правило, по которому происходит сведение магнитоэлектрических явлений в электромагнитные». В своих работах Ленц устанавливает, что каждому электромагнитному явлению соответствует некоторое магнитоэлектрическое явление. Установление закона Ленца имело чрезвычайно большое значение. Задолго до установления Гельмгольцем принципа сохранения энергии Ленц выразил ту же идею в своем законе: «приближая проводник с током к другому замкнутому проводнику, мы возбуждаем в этом последнем ток. Работа перемещения первого проводника превращается в электрическую энергию во втором проводнике, направление тока в котором должно быть таково, чтобы препятствовать перемещению первого проводника, т. е. чтобы проводники отталкивались». В дальнейшем Ленц специально занялся вопросом об энергии электрического тока.
В 1834 г. Фарадей устанавливает законы электролиза, явления, открытого еще в 1800 г., и, таким образом, находит способ установить количественные соотношения между явлениями электрическими и химическими.
В 1837 г. Фарадей выясняет роль диэлектриков в электрических явлениях. В 1845 г. он находит количественные соотношения между явлениями магнитными и световыми, открыв явления магнитного вращения плоскости поляризации светового луча и установив зависимость в определенных случаях угла вращения от величины магнитного поля. Это явление, влияние магнитного поля на световой луч, послужило базой для многих замечательнейших открытий.
В том же году Фарадей устанавливает разницу между парамагнитными и диамагнитными телами.
К 1843 г. акад. Ленцем и Джоулем был установлен закон тепловых действий электрического тока (закон Ленца-Джоуля), связавший количественно электрические явления с тепловыми и, через их посредство, с механическими. Было, таким образом, установлено понятие об электрической энергии и об ее количественной связи с механической энергией.
В тот же период, в первой половине XIX в., был сделан еще целый ряд открытий и исследований в области электричества и магнетизма, имевших также большое значение. Таким образом, накопился целый ряд теоретических и практических сведений, которые позволяли уже надеяться осуществить мечту, зародившуюся в умах физиков уже очень давно, — мечту применить электрическую энергию для удовлетворения хозяйственных и культурных нужд человека. Осуществлением этой старой мечты занялись уже, главным образом, во второй половине XIX в., многочисленные пионеры-электрики, в числе которых было немало русских ученых и изобретателей, работы которых послужили первым этапом развития целых областей электротехники.
Развитие применений электрической энергии
РАЗВИТИЕ ПРИМЕНЕНИЙ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В НАРОДНОХОЗЯЙСТВЕННОЙ ЖИЗНИ В XIX в.
В начале XIX в. объем знаний об электричестве и магнетизме, как мы видели, был настолько ограничен, что все попытки применить электрическую энергию для практических целей не могли иметь сколько-нибудь заметного успеха. Лишь значительные успехи в изучении электрических и магнитных явлений, сделанные в первой половине XIX е., позволили во второй его половине развить эти применения и постепенно к концу 90-х годов довести электротехнику до широкого развития, продолжающегося непрерывно и в наше время. Этим развитием электротехника обязана как электрикам, так и физикам, непрерывно в течение всей второй половины XIX в. двигавшим науку об электрических и магнитных явлениях гигантскими шагами вперед.
Широкому развитию применений электрической энергии для практических целей в первое время больше всего мешало отсутствие сколько-нибудь экономичного, надежного и удобного генератора электрического тока. Вольтов столб был, конечно, непригоден для получения даже весьма небольших количеств электрической энергии. Все усовершенствования вольтова столба, превратившегося постепенно в батареи гальванических элементов всевозможных типов, тоже не оказались пригодными для целей электротехники. Сколько-нибудь значительные батареи были очень громоздки, дороги, требовали сложного обслуживания и работали с недостаточно большим коэффициентом полезного действия, расходуя при этом дорого стоящий цинк. Надежды, возлагавшиеся на термо-электрические батареи, тоже не оправдались. Несмотря на остроумие изобретателей, которых пленяла заманчивая мысль добиться непосредственного превращения тепловой энергии в электрическую, используя термоэлектрические явления, мысль эта не получила удовлетворительного решения. Работа термоэлементов оказалась столь неэкономичной, необходимое число элементов для получения нужного напряжения столь велико, что ни одно из многочисленных, разнообразных предложений не получило применения в сколько-нибудь больших установках, и применение термоэлектрических батарей оказалось возможным только для мелких производств: золочения, серебрения, никелирования, гальванопластики и т. п., да и то лишь до времени, пока широкая электрификация не дала возможности с большими удобствами и за более дешевую цену пользоваться электрическим током, получаемым от центральных электрических станций. Но эти станции могли появиться только тогда, когда были изобретены электрические генераторы, основанные на явлении электромагнитной индукции. Собственно говоря, Фарадей, открыв явление электромагнитной индукции и экспериментируя с ним, одновременно изобрел прообразы главнейших электромеханических приборов- электрический генератор и электрический трансформатор, которые в дальнейшем только совершенствовались и приспособлялись к определенным условиям работы. Диск Фарадея и кольцо Фарадея с двумя обмотками и были прообразами современных генераторов и трансформаторов.